
Tony Hunter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6076432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oncogenic kinase signalling. Nature, 2001, 411, 355-365.	13.7	3,401
2	Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling. Cell, 1995, 80, 225-236.	13.5	2,868
3	Signaling—2000 and Beyond. Cell, 2000, 100, 113-127.	13.5	2,501
4	Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 1311-1315.	3.3	2,468
5	The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification ¹ . FASEB Journal, 1995, 9, 576-596.	0.2	2,426
6	Cyclins and cancer II: Cyclin D and CDK inhibitors come of age. Cell, 1994, 79, 573-582.	13.5	2,113
7	A framework for advancing our understanding of cancer-associated fibroblasts. Nature Reviews Cancer, 2020, 20, 174-186.	12.8	2,012
8	p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell, 1994, 78, 67-74.	13.5	1,976
9	Protein Tyrosine Phosphatases in the Human Genome. Cell, 2004, 117, 699-711.	13.5	1,697
10	Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature, 1994, 372, 786-791.	13.7	1,528
11	[11] Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods in Enzymology, 1991, 201, 110-149.	0.4	1,485
12	The regulation of transcription by phosphorylation. Cell, 1992, 70, 375-387.	13.5	1,402
13	The c-fos protein interacts with c-JunAP-1 to stimulate transcription of AP-1 responsive genes. Cell, 1988, 54, 541-552.	13.5	1,369
14	[42] Detection and quantification of phosphotyrosine in proteins. Methods in Enzymology, 1983, 99, 387-402.	0.4	1,197
15	Receptor Protein-Tyrosine Kinases and Their Signal Transduction Pathways. Annual Review of Cell Biology, 1994, 10, 251-337.	26.0	1,194
16	A thousand and one protein kinases. Cell, 1987, 50, 823-829.	13.5	1,099
17	Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell, 1991, 64, 573-584.	13.5	1,095
18	Phospholipase C-Î ³ is a substrate for the PDGF and EGF receptor protein-tyrosine kinases in vivo and in vitro. Cell, 1989, 57, 1109-1122.	13.5	1,017

#	Article	IF	CITATIONS
19	Platelet-derived growth factor induces rapid but transient expression of the c-fos gene and protein. Nature, 1984, 312, 711-716.	13.7	990
20	Oncogene jun encodes a sequence-specific trans- activator similar to AP-1. Nature, 1988, 332, 166-171.	13.7	982
21	The Tyrosine Kinase Negative Regulator c-Cbl as a RING-Type, E2-Dependent Ubiquitin-Protein Ligase. Science, 1999, 286, 309-312.	6.0	963
22	Isolation of a human cyclin cDNA: Evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell, 1989, 58, 833-846.	13.5	946
23	Vitamin D Receptor-Mediated Stromal Reprogramming Suppresses Pancreatitis and Enhances Pancreatic Cancer Therapy. Cell, 2014, 159, 80-93.	13.5	871
24	A human peptidyl–prolyl isomerase essential for regulation of mitosis. Nature, 1996, 380, 544-547.	13.7	868
25	Evolution of protein kinase signaling from yeast to man. Trends in Biochemical Sciences, 2002, 27, 514-520.	3.7	856
26	The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell, 1991, 65, 895-903.	13.5	800
27	The Age of Crosstalk: Phosphorylation, Ubiquitination, and Beyond. Molecular Cell, 2007, 28, 730-738.	4.5	792
28	Cooperation between oncogenes. Cell, 1991, 64, 249-270.	13.5	769
29	Human cyclin A is adenovirus E1A-associated protein p60 and behaves differently from cyclin B. Nature, 1990, 346, 760-763.	13.7	758
30	Phosphorylation of β-Catenin by AKT Promotes β-Catenin Transcriptional Activity. Journal of Biological Chemistry, 2007, 282, 11221-11229.	1.6	740
31	Inappropriate Activation of the TSC/Rheb/mTOR/S6K Cassette Induces IRS1/2 Depletion, Insulin Resistance, and Cell Survival Deficiencies. Current Biology, 2004, 14, 1650-1656.	1.8	739
32	Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Current Biology, 1995, 5, 747-757.	1.8	720
33	Epidermal growth factor induces rapid tyrosine phosphorylation of proteins in A431 human tumor cells. Cell, 1981, 24, 741-752.	13.5	689
34	Protein kinase C phosphorylation of the EGF receptor at a threonine residue close to the cytoplasmic face of the plasma membrane. Nature, 1984, 311, 480-483.	13.7	663
35	Structural and Functional Analysis of the Mitotic Rotamase Pin1 Suggests Substrate Recognition Is Phosphorylation Dependent. Cell, 1997, 89, 875-886.	13.5	663
36	Structure-based prediction of protein–protein interactions on a genome-wide scale. Nature, 2012, 490, 556-560.	13.7	652

#	Article	IF	CITATIONS
37	Structural basis for phosphoserine-proline recognition by group IV WW domains. Nature Structural Biology, 2000, 7, 639-643.	9.7	644
38	PKM2 Phosphorylates Histone H3 and Promotes Gene Transcription and Tumorigenesis. Cell, 2012, 150, 685-696.	13.5	635
39	Oncoprotein Networks. Cell, 1997, 88, 333-346.	13.5	627
40	Evidence that the phosphorylation of tyrosine is essential for cellular transformation by Rous sarcoma virus. Cell, 1980, 20, 807-816.	13.5	617
41	Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of β-catenin, and enhanced tumor cell invasion. Cancer Cell, 2003, 4, 499-515.	7.7	617
42	Tyrosine phosphorylation: thirty years and counting. Current Opinion in Cell Biology, 2009, 21, 140-146.	2.6	576
43	An activity phosphorylating tyrosine in polyoma T antigen immunoprecipitates. Cell, 1979, 18, 925-933.	13.5	556
44	Substrate specificity of protein kinase C. Use of synthetic peptides corresponding to physiological sites as probes for substrate recognition requirements. FEBS Journal, 1986, 161, 177-184.	0.2	489
45	Integrin signalling and tyrosine phosphorylation: just the FAKs?. Trends in Cell Biology, 1998, 8, 151-157.	3.6	485
46	Reconstruction of cellular signalling networks and analysis of their properties. Nature Reviews Molecular Cell Biology, 2005, 6, 99-111.	16.1	472
47	Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. ELife, 2016, 5, .	2.8	451
48	Cyclins and cancer. Cell, 1991, 66, 1071-1074.	13.5	448
49	Brassinosteroid-Insensitive-1 Is a Ubiquitously Expressed Leucine-Rich Repeat Receptor Serine/Threonine Kinase. Plant Physiology, 2000, 123, 1247-1256.	2.3	440
50	The protein kinases of budding yeast: six score and more. Trends in Biochemical Sciences, 1997, 22, 18-22.	3.7	419
51	Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature, 2003, 424, 556-561.	13.7	412
52	Cell cycle regulation of the E2F transcription factor involves an interaction with cyclin A. Cell, 1991, 65, 1243-1253.	13.5	407
53	Casein kinase II is a negative regulator of c-Jun DNA binding and AP-1 activity. Cell, 1992, 70, 777-789.	13.5	406
54	M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFÂ-TrCP. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4419-4424.	3.3	402

#	Article	IF	CITATIONS
55	Braking the cycle. Cell, 1993, 75, 839-841.	13.5	400
56	PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone. Journal of Cell Biology, 2002, 157, 1175-1186.	2.3	396
57	A cyclin A-protein kinase complex possesses sequence-specific DNA binding activity: p33cdk2 is a component of the E2F-cyclin A complex. Cell, 1992, 68, 167-176.	13.5	395
58	Increased production of the TrkB protein tyrosine kinase receptor after brain insults. Neuron, 1993, 10, 151-164.	3.8	394
59	A growing coactivator network. Nature, 1996, 383, 22-23.	13.7	386
60	Similar effects of platelet-derived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular proteins. Cell, 1982, 31, 263-273.	13.5	385
61	Kinomics: methods for deciphering the kinome. Nature Methods, 2005, 2, 17-25.	9.0	385
62	TORC-Specific Phosphorylation of Mammalian Target of Rapamycin (mTOR): Phospho-Ser2481 Is a Marker for Intact mTOR Signaling Complex 2. Cancer Research, 2009, 69, 1821-1827.	0.4	384
63	Cyclin-dependent kinases: a family portrait. Nature Cell Biology, 2009, 11, 1275-1276.	4.6	381
64	Fluid Shear Stress Activation of Focal Adhesion Kinase. Journal of Biological Chemistry, 1997, 272, 30455-30462.	1.6	379
65	ATM Activation and Its Recruitment to Damaged DNA Require Binding to the C Terminus of Nbs1. Molecular and Cellular Biology, 2005, 25, 5363-5379.	1.1	373
66	Multiple Grb2-Mediated Integrin-Stimulated Signaling Pathways to ERK2/Mitogen-Activated Protein Kinase: Summation of Both c-Src- and Focal Adhesion Kinase-Initiated Tyrosine Phosphorylation Events. Molecular and Cellular Biology, 1998, 18, 2571-2585.	1.1	369
67	THE CROONIAN LECTURE 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 583-605.	1.8	360
68	Focal Adhesion Kinase Overexpression Enhances Ras-dependent Integrin Signaling to ERK2/Mitogen-activated Protein Kinase through Interactions with and Activation of c-Src. Journal of Biological Chemistry, 1997, 272, 13189-13195.	1.6	353
69	Transactivation by NF-IL6/LAP is enhanced by phosphorylation of its activation domain. Nature, 1993, 364, 544-547.	13.7	343
70	Roles of Chk1 in cell biology and cancer therapy. International Journal of Cancer, 2014, 134, 1013-1023.	2.3	341
71	PRC1. Molecular Cell, 1998, 2, 877-885.	4.5	339
72	NeW Wrinkles for an Old Domain. Cell, 2000, 103, 1001-1004.	13.5	337

#	Article	IF	CITATIONS
73	Why nature chose phosphate to modify proteins. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2513-2516.	1.8	322
74	The Kit receptor promotes cell survival via activation of PI 3-kinase and subsequent Akt-mediated phosphorylation of Bad on Ser136. Current Biology, 1998, 8, 779-785.	1.8	321
75	Protein-tyrosine phosphatases: The other side of the coin. Cell, 1989, 58, 1013-1016.	13.5	320
76	Mitochondria-Translocated PGK1 Functions as a Protein Kinase to Coordinate Glycolysis and the TCA Cycle in Tumorigenesis. Molecular Cell, 2016, 61, 705-719.	4.5	319
77	Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation. Nature Immunology, 2002, 3, 281-287.	7.0	318
78	Structural basis for inhibition of receptor protein-tyrosine phosphatase-α by dimerization. Nature, 1996, 382, 555-559.	13.7	317
79	Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1335-1340.	3.3	317
80	The cDNA sequence for the protein-tyrosine kinase substrate p36 (calpactin I heavy chain) reveals a multidomain protein with internal repeats. Cell, 1986, 46, 201-212.	13.5	315
81	Lasting N-Terminal Phosphorylation of c-Jun and Activation of c-Jun N-Terminal Kinases after Neuronal Injury. Journal of Neuroscience, 1998, 18, 5124-5135.	1.7	312
82	Epidermal Growth Factor-Induced Tumor Cell Invasion and Metastasis Initiated by Dephosphorylation and Downregulation of Focal Adhesion Kinase. Molecular and Cellular Biology, 2001, 21, 4016-4031.	1.1	309
83	A tail of two src's: Mutatis mutandis. Cell, 1987, 49, 1-4.	13.5	302
84	Recognition and Ubiquitination of Notch by Itch, a Hect-type E3 Ubiquitin Ligase. Journal of Biological Chemistry, 2000, 275, 35734-35737.	1.6	302
85	When is a lipid kinase not a lipid kinase? When it is a protein kinase. Cell, 1995, 83, 1-4.	13.5	299
86	Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3′-kinase is essential for male fertility. Nature Genetics, 2000, 24, 157-162.	9.4	297
87	The PHD Domain of MEKK1 Acts as an E3 Ubiquitin Ligase and Mediates Ubiquitination and Degradation of ERK1/2. Molecular Cell, 2002, 9, 945-956.	4.5	294
88	[1] Protein kinase classification. Methods in Enzymology, 1991, 200, 3-37.	0.4	287
89	Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature, 2019, 569, 131-135.	13.7	287
90	Cancer-Associated Protein Kinase C Mutations Reveal Kinase's Role as Tumor Suppressor. Cell, 2015, 160, 489-502.	13.5	285

#	Article	IF	CITATIONS
91	The mouse kinome: Discovery and comparative genomics of all mouse protein kinases. Proceedings of the United States of America, 2004, 101, 11707-11712.	3.3	278
92	Protein kinase C phosphorylates pp60src at a novel site. Cell, 1985, 42, 849-857.	13.5	267
93	Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO Journal, 2007, 26, 4102-4112.	3.5	266
94	Role of Methionine in the Initiation of Haemoglobin Synthesis. Nature, 1970, 227, 672-676.	13.7	258
95	Autoregulation and Homodimerization Are Involved in the Activation of the Plant Steroid Receptor BRI1. Developmental Cell, 2005, 8, 855-865.	3.1	257
96	Conformational Flexibility Underlies Ubiquitin Ligation Mediated by the WWP1 HECT Domain E3 Ligase. Molecular Cell, 2003, 11, 249-259.	4.5	249
97	B61 is a ligand for the ECK receptor protein-tyrosine kinase. Nature, 1994, 368, 558-560.	13.7	248
98	Characterization of t antigens in polyoma-infected and transformed cells. Cell, 1978, 15, 65-77.	13.5	245
99	Three glycolytic enzymes are phosphorylated at tyrosine in cells transformed by Rous sarcoma virus. Nature, 1983, 302, 218-223.	13.7	245
100	Dimerization-Induced Inhibition of Receptor Protein Tyrosine Phosphatase Function Through an Inhibitory Wedge. Science, 1998, 279, 88-91.	6.0	240
101	Dual-specificity protein kinases: will any hydroxyl do?. Trends in Biochemical Sciences, 1992, 17, 114-119.	3.7	236
102	Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nature Structural Biology, 2000, 7, 602-608.	9.7	226
103	Coexpressed EphA Receptors and Ephrin-A Ligands Mediate Opposing Actions on Growth Cone Navigation from Distinct Membrane Domains. Cell, 2005, 121, 127-139.	13.5	225
104	Transcriptional control: Versatile molecular glue. Current Biology, 1996, 6, 951-954.	1.8	224
105	Never say never. The NIMA-related protein kinases in mitotic control. Trends in Cell Biology, 2003, 13, 221-228.	3.6	221
106	The regulatory crosstalk between kinases and proteases in cancer. Nature Reviews Cancer, 2010, 10, 278-292.	12.8	220
107	Nuclear Translocation of Caspase-3 Is Dependent on Its Proteolytic Activation and Recognition of a Substrate-like Protein(s)*. Journal of Biological Chemistry, 2005, 280, 857-860.	1.6	219
108	SMK-1, an Essential Regulator of DAF-16-Mediated Longevity. Cell, 2006, 124, 1039-1053.	13.5	213

#	Article	IF	CITATIONS
109	Serine 727 Phosphorylation and Activation of Cytosolic Phospholipase A2 by MNK1-related Protein Kinases. Journal of Biological Chemistry, 2000, 275, 37542-37551.	1.6	208
110	Ubiquitylation and proteasomal degradation of the p21 ^{Cip1} , p27 ^{Kip1} and p57 ^{Kip2} CDK inhibitors. Cell Cycle, 2010, 9, 2342-2352.	1.3	204
111	Regulation of F-actin-dependent processes by the Abl family of tyrosine kinases. Journal of Cell Science, 2003, 116, 2613-2626.	1.2	203
112	Microarray and cDNA sequence analysis of transcription during nerve-dependent limb regeneration. BMC Biology, 2009, 7, 1.	1.7	203
113	Protein kinase signaling networks in cancer. Current Opinion in Genetics and Development, 2011, 21, 4-11.	1.5	202
114	Guanylyl Cyclase-linked Natriuretic Peptide Receptors: Structure and Regulation. Journal of Biological Chemistry, 2001, 276, 6057-6060.	1.6	197
115	CtIP Links DNA Double-Strand Break Sensing to Resection. Molecular Cell, 2009, 36, 954-969.	4.5	197
116	Growth factors: The epidermal growth factor receptor gene and its product. Nature, 1984, 311, 414-416.	13.7	194
117	Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic Wee1 via multiple pathways. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11663-11668.	3.3	191
118	Enhancement of BRCA1 E3 Ubiquitin Ligase Activity through Direct Interaction with the BARD1 Protein. Journal of Biological Chemistry, 2003, 278, 5255-5263.	1.6	185
119	Detection of a transforming gene product in cells transformed by Moloney murine sarcoma virus. Cell, 1982, 29, 417-426.	13.5	180
120	Dimerization inhibits the activity of receptor-like protein-tyrosine phosphatase-α. Nature, 1999, 401, 606-610.	13.7	177
121	Primate-Specific ORFO Contributes to Retrotransposon-Mediated Diversity. Cell, 2015, 163, 583-593.	13.5	177
122	EphrinA1-induced cytoskeletal re-organization requires FAK and p130cas. Nature Cell Biology, 2002, 4, 565-573.	4.6	175
123	How do protein kinases discriminate between serine/threonine and tyrosine? Structural insights from the insulin receptor proteinâ€ŧyrosine kinase. FASEB Journal, 1995, 9, 1255-1266.	0.2	174
124	Evidence for a NIMA-like mitotic pathway in vertebrate cells. Cell, 1995, 81, 413-424.	13.5	174
125	Characterization of the mRNAs for $\hat{1}_{\pm}$ -, $\hat{1}_{\pm}$ - and $\hat{1}_{\pm}$ -actin. Cell, 1977, 12, 767-781.	13.5	173
126	Metabolic Kinases Moonlighting as Protein Kinases. Trends in Biochemical Sciences, 2018, 43, 301-310.	3.7	173

#	Article	IF	CITATIONS
127	JAK2, Ras, and Raf Are Required for Activation of Extracellular Signal-regulated Kinase/Mitogen-activated Protein Kinase by Growth Hormone. Journal of Biological Chemistry, 1995, 270, 30837-30840.	1.6	172
128	Phosphorylation of Rat Serine 105 or Mouse Threonine 217 in C/EBPÎ ² Is Required for Hepatocyte Proliferation Induced by TGFα. Molecular Cell, 1999, 4, 1087-1092.	4.5	170
129	The F Box Protein Fbx6 Regulates Chk1 Stability and Cellular Sensitivity to Replication Stress. Molecular Cell, 2009, 35, 442-453.	4.5	170
130	C/EBPβ Phosphorylation by RSK Creates a Functional XEXD Caspase Inhibitory Box Critical for Cell Survival. Molecular Cell, 2001, 8, 807-816.	4.5	163
131	Receptor signaling: When dimerization is not enough. Current Biology, 1999, 9, R568-R571.	1.8	158
132	Phosphorylation of LC3 by the Hippo Kinases STK3/STK4 Is Essential for Autophagy. Molecular Cell, 2015, 57, 55-68.	4.5	158
133	p38-2, a Novel Mitogen-activated Protein Kinase with Distinct Properties. Journal of Biological Chemistry, 1997, 272, 19509-19517.	1.6	157
134	Monoclonal 1- and 3-Phosphohistidine Antibodies: New Tools to Study Histidine Phosphorylation. Cell, 2015, 162, 198-210.	13.5	157
135	Pin1 and Par14 Peptidyl Prolyl Isomerase Inhibitors Block Cell Proliferation. Chemistry and Biology, 2003, 10, 15-24.	6.2	156
136	Turnover of the Active Fraction of IRS1 Involves Raptor-mTOR- and S6K1-Dependent Serine Phosphorylation in Cell Culture Models of Tuberous Sclerosis. Molecular and Cellular Biology, 2006, 26, 6425-6434.	1.1	152
137	Control of haemoglobin synthesis: Rate of translation of the messenger RNA for the α and β chains. Journal of Molecular Biology, 1969, 43, 123-133.	2.0	151
138	Modulation of the F-actin cytoskeleton by c-Abl tyrosine kinase in cell spreading and neurite extension. Journal of Cell Biology, 2002, 156, 879-892.	2.3	151
139	The protein histidine phosphatase LHPP is a tumour suppressor. Nature, 2018, 555, 678-682.	13.7	151
140	Phosphorylation of the Kinase Homology Domain Is Essential for Activation of the A-Type Natriuretic Peptide Receptor. Molecular and Cellular Biology, 1998, 18, 2164-2172.	1.1	149
141	Prolyl isomerase Pin1 in cancer. Cell Research, 2014, 24, 1033-1049.	5.7	149
142	Inactivation of p27Kip1 by the viral E1A oncoprotein in TGFÎ ² -treated cells. Nature, 1996, 380, 262-265.	13.7	147
143	Cyclin-dependent kinases: a new cell cycle motif?. Trends in Cell Biology, 1991, 1, 117-121.	3.6	146
144	Vertebrate non-receptor protein-tyrosine kinase families. Genes To Cells, 1996, 1, 147-169.	0.5	140

#	Article	IF	CITATIONS
145	Cyclin-dependent Kinases Are Inactivated by a Combination of p21 and Thr-14/Tyr-15 Phosphorylation after UV-induced DNA Damage. Journal of Biological Chemistry, 1996, 271, 13283-13291.	1.6	140
146	Phosphopeptide mapping and phosphoamino acid analysis by electrophoresis and chromatography on thin-layer cellulose plates. Electrophoresis, 1994, 15, 544-554.	1.3	136
147	pHisphorylation: the emergence of histidine phosphorylation as a reversible regulatory modification. Current Opinion in Cell Biology, 2017, 45, 8-16.	2.6	130
148	Receptor-Like Protein Tyrosine Phosphatase $\hat{I}\pm$ Homodimerizes on the Cell Surface. Molecular and Cellular Biology, 2000, 20, 5917-5929.	1.1	128
149	Degradation of Activated Protein Kinases by Ubiquitination. Annual Review of Biochemistry, 2009, 78, 435-475.	5.0	126
150	Structural Basis for High-Affinity Peptide Inhibition of Human Pin1. ACS Chemical Biology, 2007, 2, 320-328.	1.6	123
151	The Genesis of Tyrosine Phosphorylation. Cold Spring Harbor Perspectives in Biology, 2014, 6, a020644-a020644.	2.3	122
152	The transforming protein of Moloney murine sarcoma virus is a soluble cytoplasmic protein. Cell, 1983, 33, 161-172.	13.5	121
153	Identification and Characterization of the Major Phosphorylation Sites of the B-type Natriuretic Peptide Receptor. Journal of Biological Chemistry, 1998, 273, 15533-15539.	1.6	117
154	A conserved ubiquitination pathway determines longevity in response to diet restriction. Nature, 2009, 460, 396-399.	13.7	117
155	Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration. ELife, 2016, 5, .	2.8	117
156	Requirement for c-Src Catalytic Activity and the SH3 Domain in Platelet-derived Growth Factor BB and Epidermal Growth Factor Mitogenic Signaling. Journal of Biological Chemistry, 1996, 271, 16798-16806.	1.6	116
157	Prolyl Isomerases and Nuclear Function. Cell, 1998, 92, 141-143.	13.5	116
158	Essential role of tuberous sclerosis genes TSC1 and TSC2 in NF-κB activation and cell survival. Cancer Cell, 2006, 10, 215-226.	7.7	116
159	Cdc37: a protein kinase chaperone?. Trends in Cell Biology, 1997, 7, 157-161.	3.6	110
160	The JNKK2-JNK1 Fusion Protein Acts As a Constitutively Active c-Jun Kinase That Stimulates c-Jun Transcription Activity. Journal of Biological Chemistry, 1999, 274, 28966-28971.	1.6	105
161	A crucial role for the Anaplastic lymphoma kinase receptor tyrosine kinase in gut development in Drosophila melanogaster. EMBO Reports, 2003, 4, 781-786.	2.0	104
162	Inhibition of c-Abl Tyrosine Kinase Activity by Filamentous Actin. Journal of Biological Chemistry, 2001, 276, 27104-27110.	1.6	103

#	Article	IF	CITATIONS
163	BRCA1 Is Phosphorylated at Serine 1497 In Vivo at a Cyclin-Dependent Kinase 2 Phosphorylation Site. Molecular and Cellular Biology, 1999, 19, 4843-4854.	1.1	102
164	Tyrosine phosphorylation of histone H2A by CK2 regulates transcriptional elongation. Nature, 2014, 516, 267-271.	13.7	100
165	Identification and characterization of DAlk: a novelDrosophila melanogasterRTK which drives ERK activationin vivo. Genes To Cells, 2001, 6, 531-544.	0.5	96
166	Heterochromatin-Encoded Satellite RNAs Induce Breast Cancer. Molecular Cell, 2018, 70, 842-853.e7.	4.5	96
167	Mitochondrial Aging Defects Emerge in Directly Reprogrammed Human Neurons due to Their Metabolic Profile. Cell Reports, 2018, 23, 2550-2558.	2.9	93
168	Identification of Functional Domains in the Neuronal Cdk5 Activator Protein. Journal of Biological Chemistry, 1997, 272, 5703-5708.	1.6	91
169	Critical roles of the p160 transcriptional coactivators p/CIP and SRC-1 in energy balance. Cell Metabolism, 2006, 3, 111-122.	7.2	91
170	Rapid activation of ATM on DNA flanking double-strand breaks. Nature Cell Biology, 2007, 9, 1311-1318.	4.6	91
171	Emerging functions of branched ubiquitin chains. Cell Discovery, 2021, 7, 6.	3.1	91
172	Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism. Cell Research, 2013, 23, 886-897.	5.7	89
173	1001 Protein Kinases Redux—Towards 2000. Seminars in Cell Biology, 1994, 5, 367-376.	3.5	87
174	Intracellular signalling: Putting JAKs on the kinase MAP. Current Biology, 1996, 6, 668-671.	1.8	87
175	Dual Roles of p300 in Chromatin Assembly and Transcriptional Activation in Cooperation with Nucleosome Assembly Protein 1 In Vitro. Molecular and Cellular Biology, 2002, 22, 2974-2983.	1.1	86
176	Cytokine connections. Nature, 1993, 366, 114-115.	13.7	85
177	Poly-Small Ubiquitin-like Modifier (PolySUMO)-binding Proteins Identified through a String Search. Journal of Biological Chemistry, 2012, 287, 42071-42083.	1.6	85
178	Signal Transduction from the Extracellular Matrix. A Role for the Focal Adhesion Protein-tyrosine Kinase FAK Cell Structure and Function, 1996, 21, 445-450.	0.5	84
179	Phosphorylation and spindle pole body localization of the Cdc15p mitotic regulatory protein kinase in budding yeast. Current Biology, 2000, 10, 329-332.	1.8	84
180	Activation of the Sap-1a Transcription Factor by the c-Jun N-terminal Kinase (JNK) Mitogen-activated Protein Kinase. Journal of Biological Chemistry, 1997, 272, 4219-4224.	1.6	83

#	Article	IF	CITATIONS
181	Treatment for chronic myelogenous leukemia: the long road to imatinib. Journal of Clinical Investigation, 2007, 117, 2036-2043.	3.9	83
182	Site-specific incorporation of phosphotyrosine using an expanded genetic code. Nature Chemical Biology, 2017, 13, 842-844.	3.9	82
183	Control of haemoglobin synthesis: Distribution of ribosomes on the messenger RNA for α and β chains. Journal of Molecular Biology, 1968, 36, 31-45.	2.0	81
184	RING domain dimerization is essential for RNF4 function. Biochemical Journal, 2010, 431, 23-29.	1.7	80
185	Evidence for Simian Virus 40 (SV40) Coding of SV40 T-Antigen and the SV40-Specific Proteins in HeLa Cells Infected with Nondefective Adenovirus Type 2-SV40 Hybrid Viruses. Journal of Virology, 1977, 24, 151-169.	1.5	79
186	Association of Simian Virus 40 T Antigen with Simian Virus 40 Nucleoprotein Complexes. Journal of Virology, 1979, 29, 232-241.	1.5	77
187	6 Viral Oncogenes and Tyrosine Phosphorylation. The Enzymes, 1986, 17, 191-246.	0.7	76
188	Transmission of the polyoma virus middle T gene as the oncogene of a murine retrovirus. Nature, 1984, 308, 748-750.	13.7	74
189	c-Abl phosphorylates Dok1 to promote filopodia during cell spreading. Journal of Cell Biology, 2004, 165, 493-503.	2.3	74
190	Identification of PGAM5 as a Mammalian Protein Histidine Phosphatase that Plays a Central Role to Negatively Regulate CD4 + T Cells. Molecular Cell, 2016, 63, 457-469.	4.5	74
191	Minichromosome Maintenance Proteins Interact with Checkpoint and Recombination Proteins To Promote S-Phase Genome Stability. Molecular and Cellular Biology, 2008, 28, 1724-1738.	1.1	72
192	MEKK1 Mediates the Ubiquitination and Degradation of c-Jun in Response to Osmotic Stress. Molecular and Cellular Biology, 2007, 27, 510-517.	1.1	71
193	The Receptor-like Protein-tyrosine Phosphatase, RPTPα, Is Phosphorylated by Protein Kinase C on Two Serines Close to the Inner Face of the Plasma Membrane. Journal of Biological Chemistry, 1995, 270, 10587-10594.	1.6	70
194	Viral E3ÂUbiquitin Ligase-Mediated Degradation of a Cellular E3: Viral Mimicry of a Cellular Phosphorylation Mark Targets the RNF8 FHA Domain. Molecular Cell, 2012, 46, 79-90.	4.5	69
195	Ubiquitin Ligase Activity of TFIIH and the Transcriptional Response to DNA Damage. Molecular Cell, 2005, 18, 237-243.	4.5	68
196	Cancer-Associated Loss-of-Function Mutations Implicate DAPK3 as a Tumor-Suppressing Kinase. Cancer Research, 2011, 71, 3152-3161.	0.4	68
197	c-Jun Downregulation by HDAC3-Dependent Transcriptional Repression Promotes Osmotic Stress-Induced Cell Apoptosis. Molecular Cell, 2007, 25, 219-232.	4.5	67
198	Regulation of the <i>Chlamydomonas</i> Cell Cycle by a Stable, Chromatin-Associated Retinoblastoma Tumor Suppressor Complex. Plant Cell, 2010, 22, 3331-3347.	3.1	67

#	Article	IF	CITATIONS
199	Analysis of Cell-Cycle Profiles in Transfected Cells Using a Membrane-Targeted GFP. BioTechniques, 1998, 24, 348-354.	0.8	66
200	P21 and Retinoblastoma Protein Control the Absence of DNA Replication in Terminally Differentiated Muscle Cells. Journal of Cell Biology, 2000, 149, 281-292.	2.3	66
201	Combinatorial proteomic analysis of intercellular signaling applied to the CD28 T-cell costimulatory receptor. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1594-603.	3.3	65
202	Histidine kinases and the missing phosphoproteome from prokaryotes to eukaryotes. Laboratory Investigation, 2018, 98, 233-247.	1.7	65
203	Protein Phosphatase 2A Antagonizes ATM and ATR in a Cdk2- and Cdc7-Independent DNA Damage Checkpoint. Molecular and Cellular Biology, 2006, 26, 1997-2011.	1.1	64
204	Suppressor of MEK null (SMEK)/protein phosphatase 4 catalytic subunit (PP4C) is a key regulator of hepatic gluconeogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17704-17709.	3.3	63
205	In vitro polyoma DNA synthesis: Involvement of RNA in discontinuous chain growth. Journal of Molecular Biology, 1974, 83, 123-130.	2.0	62
206	Real-time imaging reveals that noninvasive mammary epithelial acini can contain motile cells. Journal of Cell Biology, 2007, 179, 1555-1567.	2.3	61
207	Activation of germline-specific genes is required for limb regeneration in the Mexican axolotl. Developmental Biology, 2012, 370, 42-51.	0.9	60
208	Phorbol Ester-Induced Down-Regulation of Protein Kinase C Abolishes Vasopressin-Mediated Responses in Rat Anterior Pituitary Cells. Molecular Endocrinology, 1987, 1, 555-560.	3.7	58
209	Mitotic Regulation of Ribosomal S6 Kinase 1 Involves Ser/Thr, Pro Phosphorylation of Consensus and Non-consensus Sites by Cdc2. Journal of Biological Chemistry, 2003, 278, 16433-16442.	1.6	58
210	Multiple serine phosphorylation sites on the 30 kDa TMV cell-to-cell movement protein synthesized in tobacco protoplasts. Plant Journal, 1995, 8, 715-724.	2.8	55
211	Inhibition of the DNA-binding and transcriptional repression activity of the Wilms' tumor gene product, WT1, by cAMP-dependent protein kinase-mediated phosphorylation of Ser-365 and Ser-393 in the zinc finger domain. Oncogene, 1997, 15, 2001-2012.	2.6	55
212	Editorial overview: Signal transduction and growth control in normal and cancer cells. Current Opinion in Genetics and Development, 1994, 4, 1-4.	1.5	53
213	In Vitro Polyoma DNA Synthesis: Characterization of a System from Infected 3T3 Cells. Journal of Virology, 1974, 13, 125-139.	1.5	53
214	The PDGF receptor phosphorylates Tyr 138 in the c-Src SH3 domain in vivo reducing peptide ligand binding. Oncogene, 1997, 14, 17-34.	2.6	52
215	In vitro polyoma DNA synthesis: Discontinuous chain growth. Journal of Molecular Biology, 1974, 83, 99-121.	2.0	51
216	Escargot Restricts Niche Cell to Stem Cell Conversion in the Drosophila Testis. Cell Reports, 2014, 7, 722-734.	2.9	51

#	Article	lF	CITATIONS
217	Mechanism of ubiquitin chain synthesis employed by a HECT domain ubiquitin ligase. Journal of Biological Chemistry, 2017, 292, 10398-10413.	1.6	51
218	Oncogenes and growth control. Trends in Biochemical Sciences, 1985, 10, 275-280.	3.7	49
219	Expression of a novel form of p21Cip1/Waf1 in UV-irradiated and transformed cells. Oncogene, 1998, 16, 1333-1343.	2.6	49
220	Induction of growth arrest and cell death by overexpression of the cyclin-Cdk inhibitor p21 in hamster BHK21 cells. Oncogene, 1998, 16, 369-380.	2.6	48
221	Activation of Protein Kinase C Stimulates the Dephosphorylation of Natriuretic Peptide Receptor-B at a Single Serine Residue. Journal of Biological Chemistry, 2000, 275, 31099-31106.	1.6	47
222	The RING Finger Protein RNF8 Ubiquitinates Nbs1 to Promote DNA Double-strand Break Repair by Homologous Recombination. Journal of Biological Chemistry, 2012, 287, 43984-43994.	1.6	46
223	Histidine phosphorylation relieves copper inhibition in the mammalian potassium channel KCa3.1. ELife, 2016, 5, .	2.8	46
224	DFak56 Is a Novel Drosophila melanogaster Focal Adhesion Kinase. Journal of Biological Chemistry, 1999, 274, 35621-35629.	1.6	44
225	Suppressors of Bir1p (Survivin) Identify Roles for the Chromosomal Passenger Protein Pic1p (INCENP) and the Replication Initiation Factor Psf2p in Chromosome Segregation. Molecular and Cellular Biology, 2005, 25, 9000-9015.	1.1	44
226	Allelic Variants in the Amino-acid Sequence of the α Chain of Rabbit Haemoglobin. Nature, 1969, 223, 1270-1272.	13.7	43
227	Spatiotemporal profiling of cytosolic signaling complexes in living cells by selective proximity proteomics. Nature Communications, 2021, 12, 71.	5.8	43
228	BIOCHEMISTRY: UbiquitinationMore Than Two to Tango. Science, 2000, 289, 2061-2062.	6.0	42
229	Instructive role of aPKCζ subcellular localization in the assembly of adherens junctions in neural progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 335-340.	3.3	42
230	Phosphotyrosine $\hat{a} \in $ "a new protein modification. Trends in Biochemical Sciences, 1982, 7, 246-249.	3.7	41
231	Secreted Glioblastoma Nanovesicles Contain Intracellular Signaling Proteins and Active Ras Incorporated in a Farnesylation-dependent Manner. Journal of Biological Chemistry, 2017, 292, 611-628.	1.6	41
232	In vitro polyoma DNA synthesis: Asymmetry of short DNA chains. Cell, 1977, 12, 1021-1028.	13.5	40
233	The v-Src SH3 Domain Facilitates a Cell Adhesion-independent Association with Focal Adhesion Kinase. Journal of Biological Chemistry, 2001, 276, 17653-17662.	1.6	40
234	Tuft Cell Formation Reflects Epithelial Plasticity in Pancreatic Injury: Implications for Modeling Human Pancreatitis. Frontiers in Physiology, 2020, 11, 88.	1.3	40

#	Article	IF	CITATIONS
235	Tuberous Sclerosis and Insulin Resistance: Unlikely Bedfellows Reveal A TORrid Affair. Cell Cycle, 2005, 4, 46-51.	1.3	39
236	Monitoring ATM kinase activity in living cells. DNA Repair, 2007, 6, 1277-1284.	1.3	38
237	Apoptosis Is Induced in BHK Cells by the tsBN462/13 Mutation in the CCG1/TAFII250 Subunit of the TFIID Basal Transcription Factor. Experimental Cell Research, 1995, 218, 490-498.	1.2	37
238	Identification of a Packaged Cellular mRNA in Virions of Rous Sarcoma Virus. Journal of Virology, 1981, 39, 471-480.	1.5	37
239	Recurrent MLK4 Loss-of-Function Mutations Suppress JNK Signaling to Promote Colon Tumorigenesis. Cancer Research, 2016, 76, 724-735.	0.4	36
240	A-Kinase-Anchoring Protein 95 Functions as a Potential Carrier for the Nuclear Translocation of Active Caspase 3 through an Enzyme-Substrate-Like Association. Molecular and Cellular Biology, 2005, 25, 9469-9477.	1.1	35
241	Multiple proteins and subgenomic mRNAs may be derived from a single open reading frame on tobacco mosaic virus RNA. Nucleic Acids Research, 1983, 11, 801-821.	6.5	34
242	Transcriptional Repressor DAXX Promotes Prostate Cancer Tumorigenicity via Suppression of Autophagy. Journal of Biological Chemistry, 2015, 290, 15406-15420.	1.6	34
243	Retrotransposon long interspersed nucleotide elementâ€1 (LINEâ€1) is activated during salamander limb regeneration. Development Growth and Differentiation, 2012, 54, 673-685.	0.6	33
244	Tyrosine phosphorylation in cell signaling and disease Keio Journal of Medicine, 2002, 51, 61-71.	0.5	32
245	Wnt-Independent ?-catenin Transactivation in Tumor Developement. Cell Cycle, 2004, 3, 569-571.	1.3	32
246	Discovering the first tyrosine kinase. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7877-7882.	3.3	32
247	Cell Regulation: Innocent bystanders or chosen collaborators?. Current Biology, 1995, 5, 1243-1247.	1.8	31
248	RNA Tumor Viruses. The Molecular Biology of Tumor Viruses. Second edition. Cell, 1983, 32, 1-2.	13.5	30
249	Dâ€ŧype cyclin expression is decreased and p21 and p27 CDK inhibitor expression is increased when tsBN462 CCG1/TAF II 250 mutant cells arrest in G1 at the restrictive temperature. Genes To Cells, 1996, 1, 687-705.	0.5	29
250	Phosphoproteomics finds its timing. Nature Biotechnology, 2004, 22, 1093-1094.	9.4	29
251	The Deubiquitylase MATH-33 Controls DAF-16 Stability and Function in Metabolism and Longevity. Cell Metabolism, 2015, 22, 151-163.	7.2	29
252	Mosaic adenovirus-SV40 RNA specified by the non-defective hybrid virus Ad2 + ND4. Journal of Molecular Biology, 1979, 130, 337-351.	2.0	28

#	Article	IF	CITATIONS
253	E3 ubiquitin-protein ligase activity of parkin is dependent on cooperative interaction of RING finger (TRIAD) elements. Journal of Biomedical Science, 2001, 8, 421-429.	2.6	28
254	An SH2-domain-containing kinase negatively regulates the phosphatidylinositol-3 kinase pathway. Genes and Development, 2001, 15, 687-698.	2.7	27
255	Genetic and cellular mechanisms of oncogenesis. Current Opinion in Genetics and Development, 2010, 20, 1-3.	1.5	27
256	A Krüppel-like factor downstream of the E3 ligase WWP-1 mediates dietary-restriction-induced longevity in Caenorhabditis elegans. Nature Communications, 2014, 5, 3772.	5.8	27
257	Role of Tyrosine Phosphorylation in Malignant Transformation by Viruses and in Cellular Growth Control. Progress in Molecular Biology and Translational Science, 1983, 29, 221-232.	1.9	26
258	Possible involvement of caspaseâ€7 in cell cycle progression at mitosis. Genes To Cells, 2008, 13, 609-621.	0.5	26
259	Challenges in validating candidate therapeutic targets in cancer. ELife, 2018, 7, .	2.8	25
260	SIGNAL TRANSDUCTION: Unexpected Mediators of Protein Phosphorylation. Science, 2004, 306, 2053-2055.	6.0	24
261	NME/NM23/NDPK and Histidine Phosphorylation. International Journal of Molecular Sciences, 2020, 21, 5848.	1.8	24
262	Regulation of Dictyostelium Protein-tyrosine Phosphatase-3 (PTP3) through Osmotic Shock and Stress Stimulation and Identification of pp130 as a PTP3 Substrate. Journal of Biological Chemistry, 1999, 274, 12129-12138.	1.6	23
263	Defective RNA polymerase III is negatively regulated by the SUMO-Ubiquitin-Cdc48 pathway. ELife, 2018, 7, .	2.8	23
264	Cancer: Cell growth control mechanisms. Nature, 1986, 322, 14-15.	13.7	21
265	A single cyclin A gene and multiple cyclin B1-related sequences are dispersed in the mouse genome. Genomics, 1992, 13, 415-424.	1.3	21
266	Signal Transduction: From the Atomic Age to the Post-Genomic Era. Cold Spring Harbor Perspectives in Biology, 2014, 6, a022913-a022913.	2.3	21
267	Pink1, the first ubiquitin kinase. EMBO Journal, 2014, 33, 1621-1623.	3.5	21
268	Dna2 initiates resection at clean DNA double-strand breaks. Nucleic Acids Research, 2017, 45, 11766-11781.	6.5	21
269	SIGNAL TRANSDUCTION:Nuclear Fusion of Signaling Pathways. Science, 1999, 284, 443-444.	6.0	20
270	Critical Role of T-Loop and H-Motif Phosphorylation in the Regulation of S6 Kinase 1 by the Tuberous Sclerosis Complex. Journal of Biological Chemistry, 2004, 279, 20816-20823.	1.6	20

#	Article	IF	CITATIONS
271	The Transcriptional Coactivators p/CIP and SRC-1 Control Insulin Resistance through IRS1 in Obesity Models. PLoS ONE, 2012, 7, e36961.	1.1	20
272	Psy2 Targets the PP4 Family Phosphatase Pph3 To Dephosphorylate Mth1 and Repress Glucose Transporter Gene Expression. Molecular and Cellular Biology, 2014, 34, 452-463.	1.1	20
273	The Potential Functional Roles of NME1 Histidine Kinase Activity in Neuroblastoma Pathogenesis. International Journal of Molecular Sciences, 2020, 21, 3319.	1.8	20
274	Overexpression of D-type cyclins, E2F-1, SV40 large T antigen and HPV16 E7 rescue cell cycle arrest of tsBN462 cells caused by the CCG1/TAFII250 mutation. Oncogene, 1999, 18, 1797-1806.	2.6	19
275	The discovery of tyrosine phosphorylation: It's all in the buffer!. Cell, 2004, 116, S35-S39.	13.5	19
276	Multiple Arkadia/RNF111 Structures Coordinate Its Polycomb Body Association and Transcriptional Control. Molecular and Cellular Biology, 2014, 34, 2981-2995.	1.1	19
277	Photoaffinity-engineered protein scaffold for systematically exploring native phosphotyrosine signaling complexes in tumor samples. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8863-E8872.	3.3	19
278	CaMKII Structure—An Elegant Design. Cell, 2005, 123, 765-767.	13.5	17
279	A journey from phosphotyrosine to phosphohistidine and beyond. Molecular Cell, 2022, 82, 2190-2200.	4.5	17
280	p190RhoGAP Filters Competing Signals to Resolve Axon Guidance Conflicts. Neuron, 2019, 102, 602-620.e9.	3.8	16
281	The DAXX co-repressor is directly recruited to active regulatory elements genome-wide to regulate autophagy programs in a model of human prostate cancer. Oncoscience, 2015, 2, 362-372.	0.9	16
282	Analysis of in vitro and in vivo products of the TMV 30kDa open reading frame using antisera raised against a synthetic peptide. FEBS Letters, 1983, 164, 355-360.	1.3	15
283	[26] Phosphorylation of phospholipase C in vivo and in vitro. Methods in Enzymology, 1991, 197, 288-305.	0.4	15
284	Development of a Nonradioactive, Time-Resolved Fluorescence Assay for the Measurement of Jun N-Terminal Kinase Activity. Journal of Biomolecular Screening, 1997, 2, 213-223.	2.6	15
285	Mitotic Phosphorylation Rescues Abl from F-actin-mediated Inhibition. Journal of Biological Chemistry, 2005, 280, 10318-10325.	1.6	15
286	An engineered ligand trap inhibits leukemia inhibitory factor as pancreatic cancer treatment strategy. Communications Biology, 2021, 4, 452.	2.0	15
287	Protein Tyrosine Phosphatase PTP1 Negatively Regulates Dictyostelium STATa and Is Required for Proper Cell-Type Proportioning. Developmental Biology, 2001, 232, 233-245.	0.9	14
288	Structural basis for differential recognition of phosphohistidine-containing peptides by 1-pHis and 3-pHis monoclonal antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13

#	Article	IF	CITATIONS
289	Characterization of the simian virus 40-specific messenger RNAs isolated from HeLa cells infected with the non-defective adenovirus 2-simian virus 40 hybrid viruses Ad2+ND2 and Ad2+ND4. Journal of Molecular Biology, 1979, 134, 95-108.	2.0	12
290	A generalized method of subcloning DNA fragments by restriction site reconstruction: application to sequencing the amino-terminal coding region of the transforming gene of Gazdar marine sarcoma virus. Nucleic Acids Research, 1982, 10, 2549-2564.	6.5	12
291	Tyrosine phosphorylation of measles virus P-phosphoprotein in persistently infected neuroblastoma cells. Virus Genes, 1996, 13, 203-210.	0.7	12
292	Identification of Small Ubiquitin-like Modifier Substrates with Diverse Functions Using the Xenopus Egg Extract System. Molecular and Cellular Proteomics, 2014, 13, 1659-1675.	2.5	12
293	AtT20 Cells Express Modified Forms of pp60c–src. Molecular Endocrinology, 1989, 3, 79-88.	3.7	11
294	The many ways that nature has exploited the unusual structural and chemical properties of phosphohistidine for use in proteins. Biochemical Journal, 2021, 478, 3575-3596.	1.7	11
295	Tyrosine protein kinases, viral transformation and the control of cell proliferation. Biochemical Society Transactions, 1984, 12, 757-759.	1.6	10
296	Cell-surface proteins: At last the insulin receptor. Nature, 1985, 313, 740-741.	13.7	10
297	Protein-serine kinase receptors?. Current Biology, 1991, 1, 15-16.	1.8	8
298	On the masking of signals on immunoblots by cellular proteins. Journal of Immunological Methods, 1996, 199, 155-158.	0.6	8
299	Determination of phosphorylation sites in peptides and proteins employing a volatile Edman reagent. The Protein Journal, 1997, 16, 329-334.	1.1	8
300	Empirical Evidence of Cellular Histidine Phosphorylation by Immunoblotting Using pHis mAbs. Methods in Molecular Biology, 2020, 2077, 181-191.	0.4	8
301	The C. elegans Ortholog of USP7 controls DAF-16 stability in Insulin/IGF-1-like signaling. Worm, 2015, 4, e1103429.	1.0	7
302	Failure to detect functional transfer of active K-Ras protein from extracellular vesicles into recipient cells in culture. PLoS ONE, 2018, 13, e0203290.	1.1	7
303	Stem Cell Factor LIFted as a Promising Clinical Target for Cancer Therapy. Molecular Cancer Therapeutics, 2019, 18, 1337-1340.	1.9	7
304	In Vitro Polyoma DNA Synthesis: Studies on an Early Temperature-Sensitive Mutant. Journal of Virology, 1974, 13, 241-243.	1.5	7
305	The effect of cobalt on the synthesis of globin and haem in reticulocytes. FEBS Letters, 1970, 9, 61-63.	1.3	6
306	Analysis of v-mos encoded proteins in cells transformed by several related murine sarcoma viruses. Journal of Cellular Biochemistry, 1982, 19, 349-362.	1.2	6

#	Article	IF	CITATIONS
307	Repair of protein-linked DNA double strand breaks: Using the adenovirus genome as a model substrate in cell-based assays. DNA Repair, 2019, 74, 80-90.	1.3	6
308	An internal ribosome entry site in the coding region of tyrosyl-DNA phosphodiesterase 2 drives alternative translation start. Journal of Biological Chemistry, 2019, 294, 2665-5341.	1.6	6
309	Subcellular Localization of Histidine Phosphorylated Proteins Through Indirect Immunofluorescence. Methods in Molecular Biology, 2020, 2077, 209-224.	0.4	6
310	Preface. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2512-2512.	1.8	5
311	A not so brief history of the Oncogene Meeting and its Cartoons. Oncogene, 2007, 26, 1260-1267.	2.6	4
312	Renato Dulbecco: A Renaissance Scientist. Cell, 2012, 149, 9-10.	13.5	4
313	Mass spectrometry-based quantification of the cellular response to methyl methanesulfonate treatment in human cells. DNA Repair, 2014, 15, 29-38.	1.3	4
314	Immunohistochemistry (IHC): Chromogenic Detection of 3-Phosphohistidine Proteins in Formaldehyde-Fixed, Frozen Mouse Liver Tissue Sections. Methods in Molecular Biology, 2020, 2077, 193-208.	0.4	4
315	Solid-state protein networks?. Trends in Cell Biology, 1996, 6, 254-255.	3.6	3
316	Eukaryotic Kinomes. , 2010, , 393-397.		3
317	How phosphoubiquitin activates Parkin. Cell Research, 2015, 25, 1087-1088.	5.7	3
318	Tony Hunter: Kinase king. Journal of Cell Biology, 2008, 181, 572-573.	2.3	2
319	Fitting WWP-1 in the dietary restriction network. Cell Cycle, 2015, 14, 1485-1486.	1.3	2
320	GNAS â€₽KA Oncosignaling Network in Colorectal Cancer. FASEB Journal, 2018, 32, 695.9.	0.2	2
321	My biochemical journey from a Cambridge undergraduate to the discovery of phosphotyrosine. Biochemist, 2021, 43, 74-77.	0.2	1
322	Tony Pawson (1952–2013). Science, 2013, 341, 1078-1078.	6.0	0
323	Translating experience: Thinking outside the box. Nature Cell Biology, 2013, 15, 545-545.	4.6	0
324	Eukaryotic Kinomes: Genomic Cataloguing of Protein Kinases and Their Evolution. , 2003, , 373-377.		0

#	Article	IF	CITATIONS
325	A tribute to Eddy Fischer (April 6, 1920–August 27, 2021): Passionate biochemist and mentor. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121815119.	3.3	ο

MEKK1: Dual Function as a Protein Kinase and a Ubiquitin Protein Ligase., 0,, 79-87.

0