Mohammad Mahdi Forghanifard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6076428/publications.pdf

Version: 2024-02-01

71 papers

1,312 citations

304368 22 h-index 414034 32 g-index

74 all docs

74 docs citations

74 times ranked 1423 citing authors

#	Article	lF	CITATIONS
1	Stemness state regulators SALL4 and SOX2 are involved in progression and invasiveness of esophageal squamous cell carcinoma. Medical Oncology, 2014, 31, 922.	1.2	81
2	Role of SALL4 in the progression and metastasis of colorectal cancer. Journal of Biomedical Science, 2013, 20, 6.	2.6	71
3	Cancer stem cell detection and isolation. Medical Oncology, 2014, 31, 69.	1.2	64
4	SALL4 as a new biomarker for early colorectal cancers. Journal of Cancer Research and Clinical Oncology, 2015, 141, 229-235.	1.2	63
5	Expression Analysis Elucidates the Roles of MAML1 and Twist1 in Esophageal Squamous Cell Carcinoma Aggressiveness and Metastasis. Annals of Surgical Oncology, 2012, 19, 743-749.	0.7	47
6	Correlation of Wnt and NOTCH pathways in esophageal squamous cell carcinoma. Journal of Cell Communication and Signaling, 2016, 10, 129-135.	1.8	47
7	Cancer-testis gene expression profiling in esophageal squamous cell carcinoma: Identification of specific tumor marker and potential targets for immunotherapy. Cancer Biology and Therapy, 2011, 12, 191-197.	1.5	45
8	Molecular Signaling in Tumorigenesis of Gastric Cancer. Iranian Biomedical Journal, 2018, 22, 217-230.	0.4	43
9	WNT and NOTCH signaling pathways as activators for epidermal growth factor receptor in esophageal squamous cell carcinoma. Cellular and Molecular Biology Letters, 2018, 23, 42.	2.7	39
10	Association of PYGO2 and EGFR in esophageal squamous cell carcinoma. Medical Oncology, 2013, 30, 516.	1.2	35
11	Neoantigen in esophageal squamous cell carcinoma for dendritic cell-based cancer vaccine development. Medical Oncology, 2014, 31, 191.	1.2	32
12	Notch Signaling Target Genes are Directly Correlated to Esophageal Squamous Cell Carcinoma Tumorigenesis. Pathology and Oncology Research, 2015, 21, 463-467.	0.9	32
13	TWIST1 upregulates the MAGEA4 oncogene. Molecular Carcinogenesis, 2017, 56, 877-885.	1.3	32
14	Role of MAML1 in targeted therapy against the esophageal cancer stem cells. Journal of Translational Medicine, 2019, 17, 126.	1.8	32
15	Role of Msi1 and MAML1 in Regulation of Notch Signaling Pathway in Patients with Esophageal Squamous Cell Carcinoma. Journal of Gastrointestinal Cancer, 2015, 46, 365-369.	0.6	29
16	Role of Msi1 and PYGO2 in esophageal squamous cell carcinoma depth of invasion. Journal of Cell Communication and Signaling, 2016, 10 , $49-53$.	1.8	29
17	Predicting the molecular role of MEIS1 in esophageal squamous cell carcinoma. Tumor Biology, 2016, 37, 1715-1725.	0.8	29
18	Molecular Signaling in Tumorigenesis of Gastric Cancer. Iranian Biomedical Journal, 2018, 22, 217-30.	0.4	27

#	Article	IF	Citations
19	Role of hMLH1 and E-Cadherin Promoter Methylation in Gastric Cancer Progression. Journal of Gastrointestinal Cancer, 2014, 45, 40-47.	0.6	26
20	HES1 as an Independent Prognostic Marker in Esophageal Squamous Cell Carcinoma. Journal of Gastrointestinal Cancer, 2014, 45, 466-471.	0.6	25
21	Quantitative analysis of TEM-8 and CEA tumor markers indicating free tumor cells in the peripheral blood of colorectal cancer patients. International Journal of Colorectal Disease, 2011, 26, 1265-1270.	1.0	24
22	Clinicopathological Sex- Related Relevance of Musashi1 mRNA Expression in Esophageal Squamous Cell Carcinoma Patients. Pathology and Oncology Research, 2014, 20, 427-433.	0.9	24
23	The crossâ€regulation between SOX15 and Wnt signaling pathway. Journal of Cellular Physiology, 2017, 232, 3221-3225.	2.0	24
24	Aberrant expression of DPPA2 and HIWI genes in colorectal cancer and their impacts on poor prognosis. Tumor Biology, 2014, 35, 5299-5305.	0.8	22
25	High frequency of microsatellite instability in sporadic colorectal cancer patients in Iran. Genetics and Molecular Research, 2011, 10, 3520-3529.	0.3	21
26	Ectopic expression of TWIST1 upregulates the stemness marker OCT4 in the esophageal squamous cell carcinoma cell line KYSE30. Cellular and Molecular Biology Letters, 2017, 22, 33.	2.7	19
27	SOX1 is correlated to stemness state regulator SALL4 through progression and invasiveness of esophageal squamous cell carcinoma. Gene, 2016, 594, 171-175.	1.0	18
28	Negative Regulatory Role of TWIST1 on SNAIL Gene Expression. Pathology and Oncology Research, 2017, 23, 85-90.	0.9	16
29	A cancer-array approach elucidates the immune escape mechanism and defects in the DNA repair system in esophageal squamous cell carcinoma. Archives of Iranian Medicine, 2013, 16, 463-70.	0.2	15
30	MAML1 promotes ESCC aggressiveness through upregulation of EMT marker TWIST1. Molecular Biology Reports, 2020, 47, 2659-2668.	1.0	14
31	MAML1 and TWIST1 coâ€overexpression promote invasion of head and neck squamous cell carcinoma. Asia-Pacific Journal of Clinical Oncology, 2018, 14, e434-e441.	0.7	13
32	MAML1 regulates EMT markers expression through NOTCH-independent pathway in breast cancer cell line MCF7. Biochemical and Biophysical Research Communications, 2019, 510, 376-382.	1.0	13
33	Telomere shortening associated with increased levels of oxidative stress in sulfur mustard-exposed Iranian veterans. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2018, 834, 1-5.	0.9	12
34	Linkage between EMT and stemness state through molecular association between TWIST1 and NY-ESO1 in esophageal squamousÂcell carcinoma. Biochimie, 2019, 163, 84-93.	1.3	12
35	<i>MEIS1</i> knockdown may promote differentiation of esophageal squamous carcinoma cell line KYSEâ€30. Molecular Genetics & Genomic Medicine, 2019, 7, e00746.	0.6	12
36	MEIS1 promotes expression of stem cell markers in esophageal squamous cell carcinoma. BMC Cancer, 2020, 20, 789.	1.1	12

#	Article	IF	CITATIONS
37	Crosstalk between MMP-13, CD44, and TWIST1 and its role in regulation of EMT in patients with esophageal squamous cell carcinoma. Molecular and Cellular Biochemistry, 2021, 476, 2465-2478.	1.4	12
38	Predicting the Correlation of EZH2 and Cancer Stem Cell Markers in Esophageal Squamous Cell Carcinoma. Journal of Gastrointestinal Cancer, 2018, 49, 437-441.	0.6	11
39	SOX2/SALL4 stemness axis modulates Notch signaling genes to maintain self-renewal capacity of esophageal squamous cell carcinoma. Molecular and Cellular Biochemistry, 2021, 476, 921-929.	1.4	11
40	High frequency of Neuropeptide Y Leu7Pro polymorphism in an Iranian population and its association with coronary artery disease. Gene, 2012, 496, 22-27.	1.0	10
41	Diagnostic clinical relevance of developmental pluripotency-associated 2 (DPPA2) in colorectal cancer. International Journal of Surgery, 2015, 13, 193-197.	1.1	10
42	Cloning and Sequence Analysis of LipL32, a Surface–Exposed Lipoprotein of Pathogenic Leptospira Spp. Iranian Red Crescent Medical Journal, 2013, 15, e8793.	0.5	9
43	Contribution of MAML1 in esophageal squamous cell carcinoma tumorigenesis. Annals of Diagnostic Pathology, 2017, 27, 79-82.	0.6	8
44	Crosstalk between SHH and stemness state signaling pathways in esophageal squamous cell carcinoma. Journal of Cell Communication and Signaling, 2017, 11, 147-153.	1.8	8
45	Crosstalk between MEIS1 and markers of different cell signaling pathways in esophageal squamous cell carcinoma. Molecular Biology Reports, 2020, 47, 3439-3448.	1.0	8
46	DPPA2 Protein Expression is Associated with Gastric Cancer Metastasis. Asian Pacific Journal of Cancer Prevention, 2016, 16, 8461-8465.	0.5	8
47	Biological and Clinicopathological Significance of Cripto-1 Expression in the Progression of Human ESCC. Reports of Biochemistry and Molecular Biology, 2017, 5, 83-90.	0.5	8
48	BRUCE Protein, New Marker for Targeted Therapy of Gastric Carcinoma. Journal of Gastrointestinal Cancer, 2017, 48, 151-155.	0.6	7
49	Correlation between SALL4 stemness marker and bone morphogenetic protein signaling genes in esophageal squamous cell carcinoma. Journal of Biochemical and Molecular Toxicology, 2019, 33, e22262.	1.4	7
50	Role of DIDO1 in Progression of Esophageal Squamous Cell Carcinoma. Journal of Gastrointestinal Cancer, 2020, 51, 83-87.	0.6	7
51	Interaction between LINC-ROR and Stemness State in Gastric Cancer Cells with Helicobacter pylori Infection. Iranian Biomedical Journal, 2021, 25, 157-168.	0.4	7
52	Investigation of melanoma-associated antigen A4 cancer/testis antigen clinical relevance in esophageal squamous cell carcinoma. Journal of Cancer Research and Therapeutics, 2018, 14, 1059-1064.	0.3	7
53	Prevalence and Molecular Characterization of Plasmid-mediated Extended-Spectrum β-Lactamase Genes (balaTEM, blaCTX and blASHV) Among Urinary Escherichia coli Clinical Isolates in Mashhad, Iran. Iranian Journal of Basic Medical Sciences, 2012, 15, 833-9.	1.0	7
54	Contribution of EVX1 in Aggressiveness of Esophageal Squamous Cell Carcinoma. Pathology and Oncology Research, 2016, 22, 341-347.	0.9	6

#	Article	IF	CITATIONS
55	TWIST1, MMPâ€21, and HLAGâ€1 coâ€overexpression is associated with ESCC aggressiveness. Journal of Cellular Biochemistry, 2019, 120, 14838-14846.	1.2	6
56	TWIST1 correlates with Notch signaling pathway to develop esophageal squamous cell carcinoma. Molecular and Cellular Biochemistry, 2020, 474, 181-188.	1.4	6
57	Whole Exome Sequencing Reveals a Novel Damaging Mutation in Human Fibroblast Activation Protein in a Family with Esophageal Squamous Cell Carcinoma. Journal of Gastrointestinal Cancer, 2020, 51, 179-188.	0.6	5
58	A new gene panel as a marker for ESCC poor prognosis; INPP5A, TWIST1, MMP2, and EGFR. Advances in Medical Sciences, 2021, 66, 231-236.	0.9	5
59	Expression analysis of BRUCE protein in esophageal squamous cell carcinoma. Annals of Diagnostic Pathology, 2016, 24, 47-51.	0.6	4
60	TWIST1 upregulates matrix metalloproteinase (MMP) genes family in esophageal squamous carcinoma cells. Gene Expression Patterns, 2020, 37, 119127.	0.3	4
61	GSTs polymorphisms are associated with epigenetic silencing of CDKN2A gene in esophageal squamous cell carcinoma. Environmental Science and Pollution Research, 2020, 27, 31269-31277.	2.7	4
62	Loss of heterozygosity and microsatellite instability as predictive markers among Iranian esophageal cancer patients. Iranian Journal of Basic Medical Sciences, 2016, 19, 726-33.	1.0	4
63	Elucidated tumorigenic role of MAML1 and TWIST1 in gastric cancer is associated with Helicobacter pylori infection. Microbial Pathogenesis, 2022, 162, 105304.	1.3	4
64	Association of Two CD44 Polymorphisms with Clinical Outcomes of Gastric Cancer Patients. Asian Pacific Journal of Cancer Prevention, 2018, 19, 1313-1318.	0.5	3
65	Identification of four novel mutations of the WFS1 gene in Iranian Wolfram syndrome pedigrees. Acta Diabetologica, 2016, 53, 899-904.	1.2	2
66	PYGO2 as an independent diagnostic marker expressed in a majority of colorectal cancers. Journal of Histotechnology, 2019, 42, 98-103.	0.2	2
67	A novel mutation in the cathepsin C (CTSC) gene in Iranian family with Papillon‣efevre syndrome. Clinical and Experimental Dental Research, 2021, 7, 568-573.	0.8	2
68	A revised infrageneric classification of Bellevalia Lapeyr. (Asparagaceae: Scilloideae) based on molecular analysis. Phytotaxa, 2021, 525, 70-84.	0.1	2
69	Down-Regulation of TSLP After EZH2 Silencing in ESCC Cell Line. Journal of Biomedicine, 2016, 1, .	0.0	1
70	Ectopic Expression of Human Gene in ESCC Cell Line Using Retroviral System. Avicenna Journal of Medical Biotechnology, 2018, 10, 75-82.	0.2	1
71	Allogeneic tumor cell line-based vaccines: A good alternative to autologous and cancer stem cell vaccines in colorectal cancer Iranian Journal of Basic Medical Sciences, 2021, 24, 1231-1239.	1.0	1