Joshua C Wood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6076389/publications.pdf

Version: 2024-02-01

840728 888047 16 969 11 17 citations h-index g-index papers 20 20 20 1328 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genome diversity of tuber-bearing <i>Solanum</i> uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9999-E10008.	7.1	271
2	Construction of a chromosome-scale long-read reference genome assembly for potato. GigaScience, 2020, 9 , .	6.4	150
3	An updated gene atlas for maize reveals organâ€specific and stressâ€induced genes. Plant Journal, 2019, 97, 1154-1167.	5.7	114
4	Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity. Molecular Plant, 2022, 15, 520-536.	8.3	72
5	The evolutionary origins of the cat attractant nepetalactone in catnip. Science Advances, 2020, 6, eaba0721.	10.3	70
6	Quantitative trait loci and differential gene expression analyses reveal the genetic basis for negatively associated \hat{l}^2 -carotene and starch content in hexaploid sweetpotato [Ipomoea batatas (L.) Lam.]. Theoretical and Applied Genetics, 2020, 133, 23-36.	3.6	59
7	The biosynthesis of thymol, carvacrol, and thymohydroquinone in Lamiaceae proceeds via cytochrome P450s and a short-chain dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	44
8	The tepary bean genome provides insight into evolution and domestication under heat stress. Nature Communications, $2021, 12, 2638$.	12.8	43
9	Multiple QTL Mapping in Autopolyploids: A Random-Effect Model Approach with Application in a Hexaploid Sweetpotato Full-Sib Population. Genetics, 2020, 215, 579-595.	2.9	42
10	Generation of a chromosome-scale genome assembly of the insect-repellent terpenoid-producing Lamiaceae species, Callicarpa americana. GigaScience, 2020, 9, .	6.4	21
11	Genome sequencing of four culinary herbs reveals terpenoid genes underlying chemodiversity in the Nepetoideae. DNA Research, 2020, 27, .	3.4	18
12	Combining GWAS and TWAS to identify candidate causal genes for tocochromanol levels in maize grain. Genetics, 2022, 221, .	2.9	15
13	Genome-wide association identifies a missing hydrolase for tocopherol synthesis in plants. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	11
14	Genome assembly of $\langle i \rangle$ Chiococca alba $\langle i \rangle$ uncovers key enzymes involved in the biosynthesis of unusual terpenoids. DNA Research, 2020, 27, .	3.4	10
15	Transcriptomeâ€wide association and prediction for carotenoids and tocochromanols in fresh sweet corn kernels. Plant Genome, 2022, 15, e20197.	2.8	10
16	Impact of choice of future climate change projection on growth chamber experimental outcomes: a preliminary study in potato. International Journal of Biometeorology, 2018, 62, 669-679.	3.0	6