
Lucio Tentori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6076351/publications.pdf Version: 2024-02-01

Ι μαίο Τεντορι

#	Article	IF	CITATIONS
1	Monoclonal Antibodies to CTLA-4 with Focus on Ipilimumab. Experientia Supplementum (2012), 2022, 113, 295-350.	0.5	3
2	Role of VEGFRâ€1 in melanoma acquired resistance to the BRAF inhibitor vemurafenib. Journal of Cellular and Molecular Medicine, 2020, 24, 465-475.	1.6	34
3	Targeting the vascular endothelial growth factor receptor-1 by the monoclonal antibody D16F7 to increase the activity of immune checkpoint inhibitors against cutaneous melanoma. Pharmacological Research, 2020, 159, 104957.	3.1	22
4	Effects of Glutathione Transferase-Targeting Nitrobenzoxadiazole Compounds in Relation to PD-L1 Status in Human Melanoma Cells. Chemotherapy, 2019, 64, 138-145.	0.8	4
5	Cytotoxicity and Differentiating Effect of the Poly(ADP-Ribose) Polymerase Inhibitor Olaparib in Myelodysplastic Syndromes. Cancers, 2019, 11, 1373.	1.7	13
6	Drug-induced xenogenization of tumors: A possible role in the immune control of malignant cell growth in the brain?. Pharmacological Research, 2018, 131, 1-6.	3.1	5
7	Poly(ADP-ribose) polymerase inhibitor olaparib hampers placental growth factor-driven activation of myelomonocytic cells. Oncology Reports, 2018, 39, 2261-2269.	1.2	3
8	The Anti–Vascular Endothelial Growth Factor Receptor-1 Monoclonal Antibody D16F7 Inhibits Glioma Growth and Angiogenesis In Vivo. Journal of Pharmacology and Experimental Therapeutics, 2018, 364, 77-86.	1.3	24
9	Experimental Evidence of the Antitumor, Antimetastatic and Antiangiogenic Activity of Ellagic Acid. Nutrients, 2018, 10, 1756.	1.7	178
10	The anti-vascular endothelial growth factor receptor-1 monoclonal antibody D16F7 inhibits invasiveness of human glioblastoma and glioblastoma stem cells. Journal of Experimental and Clinical Cancer Research, 2017, 36, 106.	3.5	36
11	Modulation of GDF11 expression and synaptic plasticity by age and training. Oncotarget, 2017, 8, 57991-58002.	0.8	14
12	Exploiting Microglial Functions for the Treatment of Glioblastoma. Current Cancer Drug Targets, 2017, 17, 267-281.	0.8	40
13	Ellagic Acid Inhibits Bladder Cancer Invasiveness and In Vivo Tumor Growth. Nutrients, 2016, 8, 744.	1.7	76
14	Antitumor activity of a novel anti-vascular endothelial growth factor receptor-1 monoclonal antibody that does not interfere with ligand binding. Oncotarget, 2016, 7, 72868-72885.	0.8	25
15	Cilengitide downmodulates invasiveness and vasculogenic mimicry of neuropilin 1 expressing melanoma cells through the inhibition of αvβ5 integrin. International Journal of Cancer, 2015, 136, E545-58.	2.3	49
16	Neuropilin-1 expressing melanoma cells as a model to study the aggressiveness of metastatic melanoma. Journal of Translational Medicine, 2015, 13, P6.	1.8	1
17	A new water soluble MAPK activator exerts antitumor activity in melanoma cells resistant to the BRAF inhibitor vemurafenib. Biochemical Pharmacology, 2015, 95, 16-27.	2.0	29
18	Mutations of human DNA topoisomerase I at poly(ADP-ribose) binding sites: modulation of camptothecin activity by ADP-ribose polymers. Journal of Experimental and Clinical Cancer Research, 2014, 33, 71.	3.5	3

LUCIO TENTORI

#	Article	IF	CITATIONS
19	Pharmacological inhibition of poly(ADP-ribose) polymerase-1 modulates resistance of human glioblastoma stem cells to temozolomide. BMC Cancer, 2014, 14, 151.	1.1	64
20	Monoclonal Antibodies to CTLA-4 with Focus on Ipilimumab. , 2014, , 233-258.		0
21	MSH3 expression does not influence the sensitivity of colon cancer HCT116 cell line to oxaliplatin and poly(ADP-ribose) polymerase (PARP) inhibitor as monotherapy or in combination. Cancer Chemotherapy and Pharmacology, 2013, 72, 117-125.	1.1	14
22	Challenging resistance mechanisms to therapies for metastatic melanoma. Trends in Pharmacological Sciences, 2013, 34, 656-666.	4.0	90
23	PARP Inhibitors in Cancer Therapy: Magic Bullets but Moving Targets. Frontiers in Oncology, 2013, 3, 279.	1.3	19
24	Platelet-derived growth factor C and calpain-3 are modulators of human melanoma cell invasiveness. Oncology Reports, 2013, 30, 2887-2896.	1.2	20
25	Influence of MLH1 on colon cancer sensitivity to poly(ADP-ribose) polymerase inhibitor combined with irinotecan. International Journal of Oncology, 2013, 43, 210-218.	1.4	10
26	lpilimumab: A novel immunostimulatory monoclonal antibody for the treatment of cancer. Pharmacological Research, 2012, 65, 9-22.	3.1	119
27	The glutathione transferase inhibitor 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) increases temozolomide efficacy against malignant melanoma. European Journal of Cancer, 2011, 47, 1219-1230.	1.3	32
28	Common fragile sites in colon cancer cell lines: Role of mismatch repair, RAD51 and poly(ADP-ribose) polymerase-1. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 712, 40-48.	0.4	11
29	PARP1 is activated at telomeres upon G4 stabilization: possible target for telomere-based therapy. Oncogene, 2010, 29, 6280-6293.	2.6	103
30	Pharmacological Inhibition of Poly(ADP-ribose) Polymerase (PARP) Activity in PARP-1 Silenced Tumour Cells Increases Chemosensitivity to Temozolomide and to a N3-Adenine Selective Methylating Agent. Current Cancer Drug Targets, 2010, 10, 368-383.	0.8	18
31	Evidence of the crucial role of the linker domain on the catalytic activity of human topoisomerase I by experimental and simulative characterization of the Lys681Ala mutant. Nucleic Acids Research, 2009, 37, 6849-6858.	6.5	29
32	Recent Approaches to Improve the Antitumor Efficacy of Temozolomide. Current Medicinal Chemistry, 2009, 16, 245-257.	1.2	80
33	Pharmacological inhibition of poly(ADP-ribose) polymerase activity down-regulates the expression of syndecan-4 and Id-1 in endothelial cells. International Journal of Oncology, 2009, 34, 861-72.	1.4	12
34	Stable depletion of poly (ADP-ribose) polymerase-1 reduces in vivo melanoma growth and increases chemosensitivity. European Journal of Cancer, 2008, 44, 1302-1314.	1.3	40
35	Inhibition of endothelial cell migration and angiogenesis by a vascular endothelial growth factor receptor-1 derived peptide. European Journal of Cancer, 2008, 44, 1914-1921.	1.3	21
36	The integrin antagonist cilengitide increases the antitumor activity of temozolomide against malignant melanoma. Oncology Reports, 2008, , .	1.2	12

LUCIO TENTORI

#	Article	IF	CITATIONS
37	The integrin antagonist cilengitide increases the antitumor activity of temozolomide against malignant melanoma. Oncology Reports, 2008, 19, 1039-43.	1.2	34
38	Poly(ADP-ribose) polymerase (PARP) inhibition or PARP-1 gene deletion reduces angiogenesis. European Journal of Cancer, 2007, 43, 2124-2133.	1.3	128
39	Evidence that corticotropin-releasing hormone inhibits cell growth of human breast cancer cells via the activation of CRH-R1 receptor subtype. Molecular and Cellular Endocrinology, 2007, 264, 44-49.	1.6	45
40	Doping with growth hormone/IGF-1, anabolic steroids or erythropoietin: is there a cancer risk?. Pharmacological Research, 2007, 55, 359-369.	3.1	61
41	Role of the mismatch repair system and p53 in the clastogenicity and cytotoxicity induced by bleomycin. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 594, 63-77.	0.4	15
42	Inhibition of poly(ADPâ€ribose) polymerase prevents irinotecanâ€induced intestinal damage and enhances irinotecan/temozolomide efficacy against colon carcinoma. FASEB Journal, 2006, 20, 1709-1711.	0.2	97
43	Corticotropin-releasing hormone receptor-1 in human endometrial cancer. Oncology Reports, 2006, 15, 375-9.	1.2	9
44	N3-Methyladenine Induces Early Poly(ADP-Ribosylation), Reduction of Nuclear Factor-κB DNA Binding Ability, and Nuclear Up-Regulation of Telomerase Activity. Molecular Pharmacology, 2005, 67, 572-581.	1.0	11
45	Brain distribution and efficacy as chemosensitizer of an oral formulation of PARP-1 inhibitor GPI 15427 in experimental models of CNS tumors. International Journal of Oncology, 2005, 26, 415.	1.4	6
46	Generation of an immortalized human endothelial cell line as a model of neovascular proliferating endothelial cells to assess chemosensitivity to anticancer drugs. International Journal of Oncology, 2005, 27, 525.	1.4	15
47	Poly(ADP-ribose) glycohydrolase inhibitor as chemosensitiser of malignant melanoma for temozolomide. European Journal of Cancer, 2005, 41, 2948-2957.	1.3	37
48	Chemopotentiation by PARP inhibitors in cancer therapy. Pharmacological Research, 2005, 52, 25-33.	3.1	170
49	Brain distribution and efficacy as chemosensitizer of an oral formulation of PARP-1 inhibitor GPI 15427 in experimental models of CNS tumors. International Journal of Oncology, 2005, 26, 415-22.	1.4	4
50	Generation of an immortalized human endothelial cell line as a model of neovascular proliferating endothelial cells to assess chemosensitivity to anticancer drugs. International Journal of Oncology, 2005, 27, 525-35.	1.4	13
51	Temozolomide: An Update on Pharmacological Strategies to Increase its Antitumour Activity. Medicinal Chemistry Reviews Online, 2004, 1, 141-150.	0.1	3
52	Primary cultures of microglial cells for testing toxicity of anticancer drugs. Toxicology Letters, 2004, 148, 91-94.	0.4	14
53	Valproic Acid Increases the Stimulatory Effect of Estrogens on Proliferation of Human Endometrial Adenocarcinoma Cells. Endocrinology, 2003, 144, 2822-2828.	1.4	23
54	Inhibition of Telomerase Increases Resistance of Melanoma Cells to Temozolomide, but Not to Temozolomide Combined with Poly (ADP-Ribose) Polymerase Inhibitor. Molecular Pharmacology, 2003, 63, 192-202.	1.0	42

LUCIO TENTORI

#	Article	IF	CITATIONS
55	Systemic administration of GPI 15427, a novel poly(ADP-ribose) polymerase-1 inhibitor, increases the antitumor activity of temozolomide against intracranial melanoma, glioma, lymphoma. Clinical Cancer Research, 2003, 9, 5370-9.	3.2	160
56	CRH Inhibits Cell Growth of Human Endometrial Adenocarcinoma Cells via CRH-Receptor 1-Mediated Activation of cAMP-PKA Pathway. Endocrinology, 2002, 143, 807-813.	1.4	64
57	Combined treatment with temozolomide and poly(ADP-ribose) polymerase inhibitor enhances survival of mice bearing hematologic malignancy at the central nervous system site. Blood, 2002, 99, 2241-2244.	0.6	83
58	Pharmacological Strategies to Increase the Antitumor Activity of Methylating Agents. Current Medicinal Chemistry, 2002, 9, 1285-1301.	1.2	52
59	Potential clinical applications of poly(ADP-ribose) polymerase (PARP) inhibitors. Pharmacological Research, 2002, 45, 73-85.	3.1	134
60	Poly(ADP-ribose) polymerase inhibitor increases growth inhibition and reduces G2/M cell accumulation induced by temozolomide in malignant glioma cells. Glia, 2002, 40, 44-54.	2.5	61
61	Apoptotic and genotoxic effects of a methyl sulfonate ester that selectively generates N3-methyladenine and poly(ADP-ribose) polymerase inhibitors in normal peripheral blood lymphocytes. Cancer Chemotherapy and Pharmacology, 2002, 49, 217-224.	1.1	16
62	Effects of single or split exposure of leukemic cells to temozolomide, combined with poly(ADP-ribose) polymerase inhibitors on cell growth, chromosomal aberrations and base excision repair components. Cancer Chemotherapy and Pharmacology, 2001, 47, 361-369.	1.1	26
63	Combined effects of adenovirus-mediated wild-type p53 transduction, temozolomide and poly (ADP-ribose) polymerase inhibitor in mismatch repair deficient and non-proliferating tumor cells. Cell Death and Differentiation, 2001, 8, 457-469.	5.0	28
64	Poly (ADP-ribose) polymerase inhibitor increases apoptosis and reduces necrosis induced by a DNA minor groove binding methyl sulfonate ester. Cell Death and Differentiation, 2001, 8, 817-828.	5.0	39
65	Mutation of the mismatch repair genehMSH2 andhMSH6 in a human T-cell leukemia line tolerant to methylating agents. , 1998, 23, 159-166.		31
66	Effect of rifampin on CD1b expression and double-negative T cell responses against mycobacteria-dertved glycolipid antigen. Life Sciences, 1998, 63, 985-994.	2.0	10
67	Involvement of the Mismatch Repair System in Temozolomide-Induced Apoptosis. Molecular Pharmacology, 1998, 54, 334-341.	1.0	233
68	CYTOKINE-INDUCED EXPRESSION OF CD1b MOLECULES BY PERIPHERAL BLOOD MONOCYTES: INFLUENCE OF 3′-AZIDO-3′-DEOXYTHYMIDINE. Pharmacological Research, 1997, 35, 135-140.	3.1	9
69	Inhibition of O ⁶ -Alkylguanine DNA-Alkyltransferase or Poly(ADP-ribose) Polymerase Increases Susceptibility of Leukemic Cells to Apoptosis Induced by Temozolomide. Molecular Pharmacology, 1997, 52, 249-258.	1.0	53
70	In vitro antitumor activity of 3′-desamino-3′(2-methoxy-4-morpholinyl) doxorubicin on human melanoma cells sensitive or resistant to triazene compounds. Cancer Chemotherapy and Pharmacology, 1997, 40, 180-184.	1.1	4
71	Antitumor and antimetastatic effects of dacarbazine combined with cyclophosphamide and interleukin-2 in Lewis lung carcinoma (3LL). Cancer Immunology, Immunotherapy, 1995, 41, 375-383.	2.0	8
72	Drug-mediated increase of susceptibility of human lung cancer to NK or LAK effector cells. Immunopharmacology, 1991, 21, 199-210.	2.0	6

#	Article	IF	CITATIONS
70	IL-2 reverses the inhibition of cytotoxic T-cell responses induced by 5-(3,3′) Tj ETQq1 1 0.784314 rgBT /Overlo		-
73	Immunopharmacology, 1990, 12, 831-840.	1.1	8
74	Comparative studies between in vitro and in vivo effects of human beta-interferon on natural killer activity and its relevance to immunochemotherapy. Cancer Immunology, Immunotherapy, 1988, 27, 163-170.	2.0	7
75	Thymic selection of the T-cell repertoire. Immunologic Research, 1988, 7, 318-328.	1.3	2
76	Influence of low-dose beta-interferon on natural killer cell activity in breast cancer patients subjected to chemotherapy. Cancer Immunology, Immunotherapy, 1987, 24, 86-91.	2.0	11