
Nikolai V Malykhin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6076341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of childhood adversity on the volumes of the amygdala subnuclei and hippocampal subfields in individuals with major depressive disorder. Journal of Psychiatry and Neuroscience, 2021, 46, E186-E195.	1.4	20
2	Investigating the effects of healthy cognitive aging on brain functional connectivity using 4.7ÅT resting-state functional magnetic resonance imaging. Brain Structure and Function, 2021, 226, 1067-1098.	1.2	15
3	Selective Effects of Healthy Cognitive Aging and Catechol- <i>O</i> -Methyl Transferase Polymorphism on Limbic White Matter Tracts. Brain Connectivity, 2021, , .	0.8	1
4	The associations of the BDNF and APOE polymorphisms, hippocampal subfield volumes, and episodic memory performance across the lifespan. Hippocampus, 2020, 30, 1081-1097.	0.9	4
5	Diffusion tensor imaging of the corpus callosum in healthy aging: Investigating higher order polynomial regression modelling. NeuroImage, 2020, 213, 116675.	2.1	18
6	Involvement of hippocampal subfields and anterior-posterior subregions in encoding and retrieval of item, spatial, and associative memories: Longitudinal versus transverse axis. NeuroImage, 2019, 191, 568-586.	2.1	43
7	Amygdala subnuclei and healthy cognitive aging. Human Brain Mapping, 2019, 40, 34-52.	1.9	12
8	In vivo quantification of amygdala subnuclei using 4.7 T fast spin echo imaging. NeuroImage, 2018, 170, 151-163.	2.1	9
9	Differential vulnerability of hippocampal subfields and anteroposterior hippocampal subregions in healthy cognitive aging. Neurobiology of Aging, 2017, 59, 121-134.	1.5	82
10	Development of a histologically validated segmentation protocol for the hippocampal body. NeuroImage, 2017, 157, 219-232.	2.1	17
11	Effects of cortisol on hippocampal subfields volumes and memory performance in healthy control subjects and patients with major depressive disorder. Journal of Affective Disorders, 2016, 201, 34-41.	2.0	44
12	Amygdala subnuclei response and connectivity during emotional processing. NeuroImage, 2016, 133, 98-110.	2.1	73
13	Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a harmonized segmentation protocol. NeuroImage, 2015, 111, 526-541.	2.1	284
14	The EADCâ€ADNI Harmonized Protocol for manual hippocampal segmentation on magnetic resonance: Evidence of validity. Alzheimer's and Dementia, 2015, 11, 111-125.	0.4	162
15	Harmonized benchmark labels of the hippocampus on magnetic resonance: The EADCâ€ADNI project. Alzheimer's and Dementia, 2015, 11, 151.	0.4	41
16	Hippocampal neuroplasticity in major depressive disorder. Neuroscience, 2015, 309, 200-213.	1.1	146
17	Delphi definition of the EADCâ€ADNI Harmonized Protocol for hippocampal segmentation on magnetic resonance. Alzheimer's and Dementia, 2015, 11, 126-138.	0.4	123
18	Operationalizing protocol differences for EADCâ€ADNI manual hippocampal segmentation. Alzheimer's and Dementia, 2015, 11, 184-194.	0.4	48

Nikolai V Malykhin

#	Article	IF	CITATIONS
19	Dentate gyrus volume and memory performance in major depressive disorder. Journal of Affective Disorders, 2015, 172, 159-164.	2.0	51
20	High field structural MRI reveals specific episodic memory correlates in the subfields of the hippocampus. Neuropsychologia, 2014, 53, 233-245.	0.7	81
21	Structural Changes in Hippocampal Subfields in Major Depressive Disorder: A High-Field Magnetic Resonance Imaging Study. Biological Psychiatry, 2013, 74, 62-68.	0.7	158
22	Intact limbic-prefrontal connections and reduced amygdala volumes in Parkinson's disease with mild depressive symptoms. Parkinsonism and Related Disorders, 2012, 18, 809-813.	1.1	74
23	Hippocampal Shape Analysis in Alzheimer's Disease and Frontotemporal Lobar Degeneration Subtypes. Journal of Alzheimer's Disease, 2012, 30, 355-365.	1.2	94
24	Fronto-limbic volumetric changes in major depressive disorder. Journal of Affective Disorders, 2012, 136, 1104-1113.	2.0	60
25	Structural organization of the prefrontal white matter pathways in the adult and aging brain measured by diffusion tensor imaging. Brain Structure and Function, 2011, 216, 417-431.	1.2	30
26	Structural changes in the hippocampus in major depressive disorder: contributions of disease and treatment. Journal of Psychiatry and Neuroscience, 2010, 35, 337-343.	1.4	171
27	Selective effects of aging on brain white matter microstructure: A diffusion tensor imaging tractography study. Neurolmage, 2010, 52, 1190-1201.	2.1	134
28	In vivo quantification of hippocampal subfields using 4.7 T fast spin echo imaging. NeuroImage, 2010, 49, 1224-1230.	2.1	121
29	Diffusion tensor imaging tractography and reliability analysis for limbic and paralimbic white matter tracts. Psychiatry Research - Neuroimaging, 2008, 164, 132-142.	0.9	96
30	Age and dementia-associated atrophy predominates in the hippocampal head and amygdala in Parkinson's disease. Neurobiology of Aging, 2008, 29, 1027-1039.	1.5	146
31	Aging hippocampus and amygdala. NeuroReport, 2008, 19, 543-547.	0.6	64
32	Three-dimensional volumetric analysis and reconstruction of amygdala and hippocampal head, body and tail. Psychiatry Research - Neuroimaging, 2007, 155, 155-165.	0.9	110
33	Detection of themyo-inositol 4.06-ppm resonance by selectiveJ rewinding: Application to human prefrontal cortex in vivo. Magnetic Resonance in Medicine, 2005, 54, 1536-1540.	1.9	6