List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6076209/publications.pdf Version: 2024-02-01

		29994	42291
211	11,497	54	92
papers	citations	h-index	g-index
217	217	217	14183
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	New insights into the genetic etiology of Alzheimer's disease and related dementias. Nature Genetics, 2022, 54, 412-436.	9.4	700
2	Progranulin Deficiency Promotes Circuit-Specific Synaptic Pruning by Microglia via Complement Activation. Cell, 2016, 165, 921-935.	13.5	558
3	Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis. Lancet Neurology, The, 2015, 14, 253-262.	4.9	432
4	Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurology, The, 2014, 13, 686-699.	4.9	302
5	Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar degeneration. Neurology, 2008, 71, 1235-1239.	1.5	285
6	Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference. Nature Communications, 2018, 9, 4273.	5.8	263
7	Microglia convert aggregated amyloid- $\hat{1}^2$ into neurotoxic forms through the shedding of microvesicles. Cell Death and Differentiation, 2014, 21, 582-593.	5.0	219
8	<i>TMEM106B</i> regulates progranulin levels and the penetrance of FTLD in <i>GRN</i> mutation carriers. Neurology, 2011, 76, 467-474.	1.5	211
9	Neurofilament light chain: a biomarker for genetic frontotemporal dementia. Annals of Clinical and Translational Neurology, 2016, 3, 623-636.	1.7	207
10	Digital Detection of Exosomes by Interferometric Imaging. Scientific Reports, 2016, 6, 37246.	1.6	200
11	Circulating Levels of Soluble Receptor for Advanced Clycation End Products in Alzheimer Disease and Vascular Dementia. Archives of Neurology, 2005, 62, 1734.	4.9	195
12	Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study. Lancet Neurology, The, 2020, 19, 145-156.	4.9	175
13	Patterns of gray matter atrophy in genetic frontotemporal dementia: results from the GENFI study. Neurobiology of Aging, 2018, 62, 191-196.	1.5	151
14	Cerebrospinal fluid biomarkers in trials for Alzheimer and Parkinson diseases. Nature Reviews Neurology, 2015, 11, 41-55.	4.9	144
15	Common variants in Alzheimer's disease and risk stratification by polygenic risk scores. Nature Communications, 2021, 12, 3417.	5.8	140
16	Presenilin mutations linked to familial Alzheimer's disease reduce endoplasmic reticulum and Golgi apparatus calcium levels. Cell Calcium, 2006, 39, 539-550.	1.1	136
17	Longitudinal prognostic value of serum "free―copper in patients with Alzheimer disease. Neurology, 2009, 72, 50-55.	1.5	129
18	Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study. Lancet Neurology, The, 2019, 18, 1103-1111.	4.9	128

#	Article	IF	CITATIONS
19	Evidence for Sub-Haplogroup H5 of Mitochondrial DNA as a Risk Factor for Late Onset Alzheimer's Disease. PLoS ONE, 2010, 5, e12037.	1.1	117
20	Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies. PLoS Medicine, 2018, 15, e1002487.	3.9	111
21	Identification of evolutionarily conserved gene networks mediating neurodegenerative dementia. Nature Medicine, 2019, 25, 152-164.	15.2	111
22	A novel deletion in progranulin gene is associated with FTDP-17 and CBS. Neurobiology of Aging, 2008, 29, 427-435.	1.5	109
23	JNK Plays a Key Role in Tau Hyperphosphorylation in Alzheimer's Disease Models. Journal of Alzheimer's Disease, 2011, 26, 315-329.	1.2	108
24	Progranulin Leu271LeufsX10 is one of the most common FTLD and CBS associated mutations worldwide. Neurobiology of Disease, 2009, 33, 379-385.	2.1	107
25	Genetic architecture of sporadic frontotemporal dementia and overlap with Alzheimer's and Parkinson's diseases. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 152-164.	0.9	107
26	Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 263-270.	0.9	106
27	Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurology, The, 2018, 17, 548-558.	4.9	97
28	Value of serum nonceruloplasmin copper for prediction of mild cognitive impairment conversion to Alzheimer disease. Annals of Neurology, 2014, 75, 574-580.	2.8	93
29	Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration. Acta Neuropathologica, 2014, 128, 397-410.	3.9	93
30	Diagnostic and prognostic value of serum NfL and p-Tau ₁₈₁ in frontotemporal lobar degeneration. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 960-967.	0.9	93
31	Apolipoprotein E and alpha brain rhythms in mild cognitive impairment: A multicentric Electroencephalogram study. Annals of Neurology, 2006, 59, 323-334.	2.8	92
32	Cystatin C is released in association with exosomes: A new tool of neuronal communication which is unbalanced in Alzheimer's disease. Neurobiology of Aging, 2011, 32, 1435-1442.	1.5	90
33	Optimal Plasma Progranulin Cutoff Value for Predicting Null Progranulin Mutations in Neurodegenerative Diseases: A Multicenter Italian Study. Neurodegenerative Diseases, 2012, 9, 121-127.	0.8	88
34	<scp>TMEM</scp> 106B p.T185S regulates <scp>TMEM</scp> 106B protein levels: implications for frontotemporal dementia. Journal of Neurochemistry, 2013, 126, 781-791.	2.1	87
35	<i>TBK1</i> Mutation Spectrum in an Extended European Patient Cohort with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Human Mutation, 2017, 38, 297-309.	1.1	87
36	Is cognitive function linked to serum free copper levels? A cohort study in a normal population. Clinical Neurophysiology, 2010, 121, 502-507.	0.7	84

3

#	Article	IF	CITATIONS
37	<i>C9ORF72</i> repeat expansions in cases with previously identified pathogenic mutations. Neurology, 2013, 81, 1332-1341.	1.5	84
38	A comprehensive study of the genetic impact of rare variants in SORL1 in European early-onset Alzheimer's disease. Acta Neuropathologica, 2016, 132, 213-224.	3.9	83
39	Effects of hormone therapy on brain morphology of healthy postmenopausal women. Menopause, 2006, 13, 584-591.	0.8	81
40	The presenilin 2 M239I mutation associated with familial Alzheimer's disease reduces Ca2+ release from intracellular stores. Neurobiology of Disease, 2004, 15, 269-278.	2.1	80
41	Markers of Alzheimer's disease in a population attending a memory clinic. Alzheimer's and Dementia, 2009, 5, 307-317.	0.4	80
42	Genotype (cystatin C) and EEG phenotype in Alzheimer disease and mild cognitive impairment: A multicentric study. NeuroImage, 2006, 29, 948-964.	2.1	76
43	Reduction of Ca2+ stores and capacitative Ca2+ entry is associated with the familial Alzheimer's disease presenilin-2 T122R mutation and anticipates the onset of dementia. Neurobiology of Disease, 2005, 18, 638-648.	2.1	73
44	Extracellular Vesicles in Alzheimer's Disease: Friends or Foes? Focus on Aβ-Vesicle Interaction. International Journal of Molecular Sciences, 2015, 16, 4800-4813.	1.8	73
45	Copper dyshomeostasis in Wilson disease and Alzheimer's disease as shown by serum and urine copper indicators. Journal of Trace Elements in Medicine and Biology, 2018, 45, 181-188.	1.5	73
46	Free Copper Distinguishes Mild Cognitive Impairment Subjects from Healthy Elderly Individuals. Journal of Alzheimer's Disease, 2011, 23, 239-248.	1.2	72
47	Mapping the effect of APOE ε4 on gray matter loss in Alzheimer's disease in vivo. NeuroImage, 2009, 45, 1090-1098.	2.1	71
48	Molecular subtypes of Alzheimer's disease. Scientific Reports, 2018, 8, 3269.	1.6	68
49	Presenilin 1 Protein Directly Interacts with Bcl-2. Journal of Biological Chemistry, 1999, 274, 30764-30769.	1.6	67
50	CXCR4 involvement in neurodegenerative diseases. Translational Psychiatry, 2018, 8, 73.	2.4	66
51	Exosomes: The Trojan horses of neurodegeneration. Medical Hypotheses, 2008, 70, 1226-1227.	0.8	65
52	White matter hyperintensities are seen only in GRN mutation carriers in the GENFI cohort. NeuroImage: Clinical, 2017, 15, 171-180.	1.4	63
53	MiRNA Profiling in Plasma Neural-Derived Small Extracellular Vesicles from Patients with Alzheimer's Disease. Cells, 2020, 9, 1443.	1.8	60
54	Alzheimer disease-associated cystatin C variant undergoes impaired secretion. Neurobiology of Disease, 2003, 13, 15-21.	2.1	59

4

#	Article	IF	CITATIONS
55	Toward a Glutamate Hypothesis of Frontotemporal Dementia. Frontiers in Neuroscience, 2019, 13, 304.	1.4	59
56	An APOE Haplotype Associated with Decreased ε4 Expression Increases the Risk of Late Onset Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 24, 235-245.	1.2	58
57	SOD1 mRNA expression in sporadic amyotrophic lateral sclerosis. Neurobiology of Disease, 2010, 39, 198-203.	2.1	57
58	Role of <i>hnRNP-A1</i> and miR-590-3p in Neuronal Death: Genetics and Expression Analysis in Patients with Alzheimer Disease and Frontotemporal Lobar Degeneration. Rejuvenation Research, 2011, 14, 275-281.	0.9	57
59	Chromosome 9p21.3 genotype is associated with vascular dementia and Alzheimer's disease. Neurobiology of Aging, 2011, 32, 1231-1235.	1.5	56
60	Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Neuron, 2021, 109, 448-460.e4.	3.8	56
61	Cognitive reserve and TMEM106B genotype modulate brain damage in presymptomatic frontotemporal dementia: a GENFI study. Brain, 2017, 140, 1784-1791.	3.7	55
62	Serum Glial Fibrillary Acidic Protein (GFAP) Is a Marker of Disease Severity in Frontotemporal Lobar Degeneration. Journal of Alzheimer's Disease, 2020, 77, 1129-1141.	1.2	55
63	Deleterious ABCA7 mutations and transcript rescue mechanisms in early onset Alzheimer's disease. Acta Neuropathologica, 2017, 134, 475-487.	3.9	53
64	Decreased plasma levels of soluble receptor for advanced glycation end products in mild cognitive impairment. Journal of Neural Transmission, 2008, 115, 1047-1050.	1.4	52
65	Atypical dementia associated with a novel presenilin-2 mutation. Annals of Neurology, 2003, 54, 832-836.	2.8	51
66	Diagnostic accuracy of markers for prodromal Alzheimer's disease in independent clinical series. Alzheimer's and Dementia, 2013, 9, 677-686.	0.4	51
67	Supporting evidence for using biomarkers in the diagnosis of MCI due to AD. Journal of Neurology, 2013, 260, 640-650.	1.8	50
68	Conformational targeting of intracellular AÎ ² oligomers demonstrates their pathological oligomerization inside the endoplasmic reticulum. Nature Communications, 2014, 5, 3867.	5.8	49
69	Rac1 activation links tau hyperphosphorylation and Aβ dysmetabolism in Alzheimer's disease. Acta Neuropathologica Communications, 2018, 6, 61.	2.4	49
70	Pattern of structural and functional brain abnormalities in asymptomatic granulin mutation carriers. Alzheimer's and Dementia, 2014, 10, S354-S363.e1.	0.4	48
71	A genome-wide screening and SNPs-to-genes approach to identify novel genetic risk factors associated with frontotemporal dementia. Neurobiology of Aging, 2015, 36, 2904.e13-2904.e26.	1.5	48
72	Poly(GP), neurofilament and grey matter deficits in <i>C9orf72</i> expansion carriers. Annals of Clinical and Translational Neurology, 2018, 5, 583-597.	1.7	48

#	Article	IF	CITATIONS
73	Loss of exosomes in progranulin-associated frontotemporal dementia. Neurobiology of Aging, 2016, 40, 41-49.	1.5	47
74	Functional network resilience to pathology in presymptomatic genetic frontotemporal dementia. Neurobiology of Aging, 2019, 77, 169-177.	1.5	47
75	BACE-2 is overexpressed in Down's syndrome. Experimental Neurology, 2003, 182, 335-345.	2.0	45
76	Cerebrospinal Fluid Biomarkers in Progranulin Mutations Carriers. Journal of Alzheimer's Disease, 2011, 27, 781-790.	1.2	45
77	The new Alzheimer's criteria in a naturalistic series of patients with mild cognitive impairment. Journal of Neurology, 2010, 257, 2004-2014.	1.8	44
78	Effects of Donepezil, Galantamine and Rivastigmine in 938 Italian Patients with Alzheimer's Disease. CNS Drugs, 2010, 24, 163-176.	2.7	44
79	Pharmacogenomics in Alzheimer's disease: a genome-wide association study of response to cholinesterase inhibitors. Neurobiology of Aging, 2013, 34, 1711.e7-1711.e13.	1.5	43
80	C9ORF72 Hexanucleotide Repeat Number in Frontotemporal Lobar Degeneration: A Genotype-Phenotype Correlation Study. Journal of Alzheimer's Disease, 2013, 38, 799-808.	1.2	43
81	Novel <scp>CSF</scp> biomarkers in genetic frontotemporal dementia identified by proteomics. Annals of Clinical and Translational Neurology, 2019, 6, 698-707.	1.7	42
82	Progression of Behavioral Disturbances and Neuropsychiatric Symptoms in Patients With Genetic Frontotemporal Dementia. JAMA Network Open, 2021, 4, e2030194.	2.8	42
83	Effects of estrogens on cognition and brain morphology: Involvement of the cerebellum. Maturitas, 2006, 54, 222-228.	1.0	41
84	Tau Rather than TDP-43 Proteins are Potential Cerebrospinal Fluid Biomarkers for Frontotemporal Lobar Degeneration Subtypes: A Pilot Study. Journal of Alzheimer's Disease, 2016, 55, 585-595.	1.2	41
85	Comparison of arterial spin labeling registration strategies in the multiâ€center GENetic frontotemporal dementia initiative (GENFI). Journal of Magnetic Resonance Imaging, 2018, 47, 131-140.	1.9	41
86	Cerebral perfusion changes in presymptomatic genetic frontotemporal dementia: a GENFI study. Brain, 2019, 142, 1108-1120.	3.7	41
87	Cerebrospinal Fluid Biomarkers for Alzheimer's Disease: The Present and the Future. Neurodegenerative Diseases, 2011, 8, 413-420.	0.8	40
88	The <i>SIRT2</i> polymorphism rs10410544 and risk of Alzheimer's disease in two Caucasian case–control cohorts. Alzheimer's and Dementia, 2013, 9, 392-399.	0.4	40
89	Progranulin plasma levels predict the presence of GRN mutations in asymptomatic subjects and do not correlate with brain atrophy: results from the GENFI study. Neurobiology of Aging, 2018, 62, 245.e9-245.e12.	1.5	40
90	A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers. Brain, 2018, 141, 2895-2907.	3.7	39

#	Article	IF	CITATIONS
91	Presymptomatic white matter integrity loss in familial frontotemporal dementia in the <scp>GENFI</scp> cohort: A crossâ€sectional diffusion tensor imaging study. Annals of Clinical and Translational Neurology, 2018, 5, 1025-1036.	1.7	39
92	Clinical and biomarker changes in presymptomatic genetic frontotemporal dementia. Neurobiology of Aging, 2019, 76, 133-140.	1.5	39
93	Blockade of the Tumor Necrosis Factor-Related Apoptosis Inducing Ligand Death Receptor DR5 Prevents β-Amyloid Neurotoxicity. Neuropsychopharmacology, 2007, 32, 872-880.	2.8	36
94	Regional atrophy of transcallosal prefrontal connections in cognitively normal <i>APOE</i> ϵ4 carriers. Journal of Magnetic Resonance Imaging, 2009, 29, 1021-1026.	1.9	36
95	Brain functional network integrity sustains cognitive function despite atrophy in presymptomatic genetic frontotemporal dementia. Alzheimer's and Dementia, 2021, 17, 500-514.	0.4	36
96	Prevalence of TAU mutations in an Italian clinical series of familial frontotemporal patients. Neuroscience Letters, 2003, 338, 85-87.	1.0	35
97	Replication Study to Confirm the Role of CYP2D6 Polymorphism rs1080985 on Donepezil Efficacy in Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2012, 30, 745-749.	1.2	35
98	Incidence of frontotemporal lobar degeneration in Italy. Neurology, 2019, 92, e2355-e2363.	1.5	35
99	Role for ATXN1, ATXN2, and HTT intermediate repeats in frontotemporal dementia and Alzheimer's disease. Neurobiology of Aging, 2020, 87, 139.e1-139.e7.	1.5	35
100	Interaction between tau and alpha-synuclein proteins is impaired in the presence of P301L tau mutation. Experimental Cell Research, 2005, 308, 78-84.	1.2	34
101	Homocysteine and electroencephalographic rhythms in Alzheimer disease: A multicentric study. Neuroscience, 2007, 145, 942-954.	1.1	34
102	Distinct cerebrospinal fluid amyloidâ€beta peptide signatures in cognitive decline associated with <scp>A</scp> lzheimer's disease and schizophrenia. Electrophoresis, 2012, 33, 3738-3744.	1.3	34
103	Genetic variability in SQSTM1 and risk of early-onset Alzheimer dementia: a European early-onset dementia consortium study. Neurobiology of Aging, 2015, 36, 2005.e15-2005.e22.	1.5	34
104	Anti-AMPA GluA3 antibodies in Frontotemporal dementia: a new molecular target. Scientific Reports, 2017, 7, 6723.	1.6	34
105	The inner fluctuations of the brain in presymptomatic Frontotemporal Dementia: The chronnectome fingerprint. NeuroImage, 2019, 189, 645-654.	2.1	33
106	Copper Imbalance in Alzheimer's Disease: Meta-Analysis of Serum, Plasma, and Brain Specimens, and Replication Study Evaluating ATP7B Gene Variants. Biomolecules, 2021, 11, 960.	1.8	33
107	Neurodevelopmental disorders: Metallomics studies for the identification of potential biomarkers associated to diagnosis and treatment. Journal of Trace Elements in Medicine and Biology, 2020, 60, 126499.	1.5	32
108	The H2 MAPT haplotype is associated with familial frontotemporal dementia. Neurobiology of Disease, 2006, 22, 357-362.	2.1	31

#	Article	IF	CITATIONS
109	The Italian Brain Normative Archive of structural MR scans: norms for medial temporal atrophy and white matter lesions. Aging Clinical and Experimental Research, 2009, 21, 266-276.	1.4	31
110	Role of OLR1 and Its Regulating hsa-miR369-3p in Alzheimer's Disease: Genetics and Expression Analysis. Journal of Alzheimer's Disease, 2011, 26, 787-793.	1.2	31
111	Good gene, bad gene: New APP variant may be both. Progress in Neurobiology, 2012, 99, 281-292.	2.8	31
112	Apathy in presymptomatic genetic frontotemporal dementia predicts cognitive decline and is driven by structural brain changes. Alzheimer's and Dementia, 2021, 17, 969-983.	0.4	31
113	Expression of A2V-mutated Aβ in Caenorhabditis elegans results in oligomer formation and toxicity. Neurobiology of Disease, 2014, 62, 521-532.	2.1	30
114	Susceptible genes and disease mechanisms identified in frontotemporal dementia and frontotemporal dementia with Amyotrophic Lateral Sclerosis by DNA-methylation and GWAS. Scientific Reports, 2017, 7, 8899.	1.6	30
115	Next Generation Sequencing Analysis in Early Onset Dementia Patients. Journal of Alzheimer's Disease, 2019, 67, 243-256.	1.2	29
116	Plasma Cystatin C and Risk of Developing Alzheimer's Disease in Subjects with Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2010, 22, 985-991.	1.2	28
117	GRN Variability Contributes to Sporadic Frontotemporal Lobar Degeneration. Journal of Alzheimer's Disease, 2010, 19, 171-177.	1.2	28
118	A Novel MAPT Mutation Associated with the Clinical Phenotype of Progressive Nonfluent Aphasia. Journal of Alzheimer's Disease, 2011, 26, 19-26.	1.2	28
119	Frontotemporal dementia: impact of P301L tau mutation on a healthy carrier. Journal of Neurology, Neurosurgery and Psychiatry, 2004, 75, 1607-1610.	0.9	27
120	Novel T719P AβPP Mutation Unbalances the Relative Proportion of Amyloid-β Peptides. Journal of Alzheimer's Disease, 2009, 18, 295-303.	1.2	27
121	Optimization protocol for amyloidâ€Î² peptides detection in human cerebrospinal fluid using SELDI TOF MS. Proteomics - Clinical Applications, 2010, 4, 352-357.	0.8	27
122	Alzheimer's CSF markers in older schizophrenia patients. International Journal of Geriatric Psychiatry, 2011, 26, 640-648.	1.3	27
123	Neuroprotection mediated by cystatin C-loaded extracellular vesicles. Scientific Reports, 2019, 9, 11104.	1.6	27
124	White matter hyperintensities in progranulin-associated frontotemporal dementia: A longitudinal GENFI study. NeuroImage: Clinical, 2019, 24, 102077.	1.4	27
125	The Heritability of Frontotemporal Lobar Degeneration: Validation of Pedigree Classification Criteria in a Northern Italy Cohort. Journal of Alzheimer's Disease, 2017, 61, 753-760.	1.2	26
126	Loss of Neuroprotective Factors in Neurodegenerative Dementias: The End or the Starting Point?. Frontiers in Neuroscience, 2017, 11, 672.	1.4	26

#	Article	IF	CITATIONS
127	Early symptoms in symptomatic and preclinical genetic frontotemporal lobar degeneration. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 975-984.	0.9	25
128	Losing protein in the brain: The case of progranulin. Brain Research, 2012, 1476, 172-182.	1.1	23
129	Rare Variants in <i>PLD3</i> Do Not Affect Risk for Early-Onset Alzheimer Disease in a European Consortium Cohort. Human Mutation, 2015, 36, 1226-1235.	1.1	23
130	Genome Wide Association Study and Next Generation Sequencing: A Glimmer of Light Toward New Possible Horizons in Frontotemporal Dementia Research. Frontiers in Neuroscience, 2019, 13, 506.	1.4	23
131	Presenilin 2 mutations alter cystatin C trafficking in mouse primary neurons. Neurobiology of Aging, 2007, 28, 371-376.	1.5	22
132	The <i>NOS3 G894T</i> (Glu298Asp) polymorphism is a risk factor for frontotemporal lobar degeneration. European Journal of Neurology, 2009, 16, 37-42.	1.7	22
133	Progranulin Mutations are a Common Cause of FTLD in Northern Italy. Alzheimer Disease and Associated Disorders, 2010, 24, 308-309.	0.6	21
134	Possible genetic and epigenetic links between human inner speech, schizophrenia and altruism. Brain Research, 2012, 1476, 38-57.	1.1	21
135	Stratifying the Presymptomatic Phase of Genetic Frontotemporal Dementia by Serum <scp>NfL</scp> and <scp>pNfH</scp> : A Longitudinal Multicentre Study. Annals of Neurology, 2022, 91, 33-47.	2.8	21
136	Circulating progranulin as a biomarker for neurodegenerative diseases. American Journal of Neurodegenerative Disease, 2012, 1, 180-90.	0.1	21
137	The H1 Haplotype of the Tau Gene (MAPT) is Associated with Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2010, 19, 909-914.	1.2	20
138	Possible new targets for GPCR modulation: allosteric interactions, plasma membrane domains, intercellular transfer and epigenetic mechanisms. Journal of Receptor and Signal Transduction Research, 2011, 31, 315-331.	1.3	20
139	Translational proteomics in Alzheimer's disease and related disorders. Clinical Biochemistry, 2013, 46, 480-486.	0.8	20
140	Predictors of comprehensive stimulation program efficacy in patients with cognitive impairment. Clinical practice recommendations. International Journal of Geriatric Psychiatry, 2013, 28, 26-33.	1.3	19
141	Rare nonsynonymous variants in SORT1 are associated with increased risk for frontotemporal dementia. Neurobiology of Aging, 2018, 66, 181.e3-181.e10.	1.5	19
142	Clinical value of cerebrospinal fluid neurofilament light chain in semantic dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 997-1004.	0.9	19
143	Faster Cortical Thinning and Surface Area Loss in Presymptomatic and Symptomatic <i>C9orf72</i> Repeat Expansion Adult Carriers. Annals of Neurology, 2020, 88, 113-122.	2.8	19
144	A Novel Progranulin Mutation Causing Frontotemporal Lobar Degeneration with Heterogeneous Phenotypic Expression. Journal of Alzheimer's Disease, 2011, 23, 7-12.	1.2	18

#	Article	IF	CITATIONS
145	Genetic Counseling and Testing for Alzheimer's Disease and Frontotemporal Lobar Degeneration: An Italian Consensus Protocol. Journal of Alzheimer's Disease, 2016, 51, 277-291.	1.2	18
146	Innovative Biomarkers for Alzheimer's Disease: Focus on the Hidden Disease Biomarkers. Journal of Alzheimer's Disease, 2018, 62, 1507-1518.	1.2	18
147	Plasma Extracellular Vesicle Size and Concentration Are Altered in Alzheimer's Disease, Dementia With Lewy Bodies, and Frontotemporal Dementia. Frontiers in Cell and Developmental Biology, 2021, 9, 667369.	1.8	18
148	Estimating the Age of the Most Common Italian GRN Mutation: Walking Back to Canossa Times. Journal of Alzheimer's Disease, 2012, 33, 69-76.	1.2	16
149	Molecular Pathways Bridging Frontotemporal Lobar Degeneration and Psychiatric Disorders. Frontiers in Aging Neuroscience, 2016, 8, 10.	1.7	16
150	Common and rare TBK1 variants in early-onset Alzheimer disease in a European cohort. Neurobiology of Aging, 2018, 62, 245.e1-245.e7.	1.5	16
151	Spatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: Initial application to the GENFI cohort. NeuroImage, 2019, 188, 282-290.	2.1	16
152	Prevalence of Pathogenic Mutations in an Italian Clinical Series of Patients with Familial Dementia. Current Alzheimer Research, 2004, 1, 215-218.	0.7	15
153	PRNP P39L Variant is a Rare Cause ofÂFrontotemporal Dementia in Italian Population. Journal of Alzheimer's Disease, 2016, 50, 353-357.	1.2	15
154	The level of 24-Hydroxycholesteryl Esters is an Early Marker of Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 56, 825-833.	1.2	15
155	Altered Expression of Circulating Cdc42 in Frontotemporal Lobar Degeneration. Journal of Alzheimer's Disease, 2018, 61, 1477-1483.	1.2	15
156	The <i>CST3</i> B haplotype is associated with frontotemporal lobar degeneration. European Journal of Neurology, 2010, 17, 143-146.	1.7	14
157	A Window into the Heterogeneity of Human Cerebrospinal Fluid A <i>β</i> Peptides. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-9.	3.0	14
158	The Missing Heritability of Sporadic Frontotemporal Dementia: New Insights from Rare Variants in Neurodegenerative Candidate Genes. International Journal of Molecular Sciences, 2019, 20, 3903.	1.8	14
159	BAG1 is a Protective Factor for Sporadic Frontotemporal Lobar Degeneration but not for Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 23, 701-707.	1.2	12
160	Quantitative Genetics Validates Previous Genetic Variants and Identifies Novel Genetic Players Influencing Alzheimer's Disease Cerebrospinal Fluid Biomarkers. Journal of Alzheimer's Disease, 2018, 66, 639-652.	1.2	12
161	HOXA1 A218G Polymorphism is Associated with Smaller Cerebellar Volume in Healthy Humans. Journal of Neuroimaging, 2009, 19, 353-358.	1.0	11
162	H1 haplotype of the MAPT gene is associated with lower regional gray matter volume in healthy carriers. European Journal of Human Genetics, 2009, 17, 287-294.	1.4	11

#	Article	IF	CITATIONS
163	Failure to Replicate an Association of rs5984894 SNP in the PCDH11X Gene in a Collection of 1,222 Alzheimer's Disease Affected Patients. Journal of Alzheimer's Disease, 2010, 21, 385-388.	1.2	11
164	Combined mass quantitation and phenotyping of intact extracellular vesicles by a microarray platform. Analytica Chimica Acta, 2016, 902, 160-167.	2.6	11
165	Depletion of Progranulin Reduces GluN2B-Containing NMDA Receptor Density, Tau Phosphorylation, and Dendritic Arborization in Mouse Primary Cortical Neurons. Journal of Pharmacology and Experimental Therapeutics, 2017, 363, 164-175.	1.3	11
166	Detection of the Presenilin 1 COOH-Terminal Fragment in the Extracellular Compartment: A Release Enhanced by Apoptosis. Experimental Cell Research, 2001, 269, 256-265.	1.2	10
167	Analysis of Alpha-2-Macroglobulin-2 Allele as a Risk Factor in Alzheimer's Disease. Dementia and Geriatric Cognitive Disorders, 2001, 12, 305-308.	0.7	10
168	Inhibition of energy metabolism down-regulates the Alzheimer related presenilin 2 gene. Journal of Neural Transmission, 2003, 110, 1029-1039.	1.4	10
169	Secretory Leukocyte Protease Inhibitor Protein Regulates the Penetrance of Frontotemporal Lobar Degeneration in Progranulin Mutation Carriers. Journal of Alzheimer's Disease, 2013, 38, 533-539.	1.2	10
170	MRI data-driven algorithm for the diagnosis of behavioural variant frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 608-616.	0.9	10
171	Gene Expression Imputation Across Multiple Tissue Types Provides Insight Into the Genetic Architecture of Frontotemporal Dementia and Its Clinical Subtypes. Biological Psychiatry, 2021, 89, 825-835.	0.7	10
172	Lack of association between MnSOD gene polymorphism and sporadic Alzheimer's Disease. Aging Clinical and Experimental Research, 2005, 17, 445-448.	1.4	9
173	Areas of intervention for genetic counselling of dementia: Cross-cultural comparison between Italians and Americans. Patient Education and Counseling, 2006, 64, 285-293.	1.0	9
174	Is KIF24 a genetic risk factor for Frontotemporal Lobar Degeneration?. Neuroscience Letters, 2010, 482, 240-244.	1.0	9
175	Genetics and Expression Analysis of the Specificity Protein 4 Gene (SP4) in Patients with Alzheimer's Disease and Frontotemporal Lobar Degeneration. Journal of Alzheimer's Disease, 2012, 31, 537-542.	1.2	9
176	Mirror Image of the Amyloid-β Species in Cerebrospinal Fluid and Cerebral Amyloid inÂAlzheimer's Disease. Journal of Alzheimer's Disease, 2015, 47, 877-881.	1.2	9
177	Italian Frontotemporal Dementia Network (FTD Group-SINDEM): sharing clinical and diagnostic procedures in Frontotemporal Dementia in Italy. Neurological Sciences, 2015, 36, 751-757.	0.9	9
178	Genetic variation across RNA metabolism and cell death gene networks is implicated in the semantic variant of primary progressive aphasia. Scientific Reports, 2019, 9, 10854.	1.6	9
179	A Novel Nonsense Angiogenin Mutation is Associated With Alzheimer Disease. Alzheimer Disease and Associated Disorders, 2019, 33, 163-165.	0.6	9
180	N-Terminally Truncated and Pyroglutamate-Modified Aβ Forms Are Measurable in Human Cerebrospinal Fluid and Are Potential Markers of Disease Progression in Alzheimer's Disease. Frontiers in Neuroscience, 2021, 15, 708119.	1.4	9

#	Article	IF	CITATIONS
181	A panel of CSF proteins separates genetic frontotemporal dementia from presymptomatic mutation carriers: a GENFI study. Molecular Neurodegeneration, 2021, 16, 79.	4.4	9
182	Effect of the Xbal polymorphism of estrogen receptor alpha on postmenopausal gray matter. Neuroscience Letters, 2008, 434, 304-309.	1.0	8
183	Association of Blood Pressure and Genetic Background With White Matter Lesions in Patients With Mild Cognitive Impairment. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2008, 63, 510-517.	1.7	8
184	Progranulin Mutations Affects Brain Oscillatory Activity in Fronto-Temporal Dementia. Frontiers in Aging Neuroscience, 2016, 8, 35.	1.7	8
185	Genetic variation in APOE, GRN, and TP53 are phenotype modifiers in frontotemporal dementia. Neurobiology of Aging, 2021, 99, 99.e15-99.e22.	1.5	8
186	Prodromal frontotemporal dementia: clinical features and predictors of progression. Alzheimer's Research and Therapy, 2021, 13, 188.	3.0	8
187	Investigating the Endo-Lysosomal System in Major Neurocognitive Disorders Due to Alzheimer's Disease, Frontotemporal Lobar Degeneration and Lewy Body Disease: Evidence for SORL1 as a Cross-Disease Gene. International Journal of Molecular Sciences, 2021, 22, 13633.	1.8	8
188	CCL8/MCP-2 association analysis in patients with Alzheimer's disease and frontotemporal lobar degeneration. Journal of Neurology, 2009, 256, 1379-1381.	1.8	7
189	C9orf72, age at onset, and ancestry help discriminate behavioral from language variants in FTLD cohorts. Neurology, 2020, 95, e3288-e3302.	1.5	7
190	Cerebrospinal Fluid EV Concentration and Size Are Altered in Alzheimer's Disease and Dementia with Lewy Bodies. Cells, 2022, 11, 462.	1.8	7
191	Plasma Small Extracellular Vesicles with Complement Alterations in GRN/C9orf72 and Sporadic Frontotemporal Lobar Degeneration. Cells, 2022, 11, 488.	1.8	7
192	Dataâ€driven staging of genetic frontotemporal dementia using multiâ€modal <scp>MRI</scp> . Human Brain Mapping, 2022, 43, 1821-1835.	1.9	7
193	Presenilin 2 is secreted in mouse primary neurons: A release enhanced by apoptosis. Mechanisms of Ageing and Development, 2007, 128, 350-353.	2.2	6
194	FUS/TLS Genetic Variability in Sporadic Frontotemporal Lobar Degeneration. Journal of Alzheimer's Disease, 2010, 19, 1317-1322.	1.2	6
195	Characterization of Amyloid-β Deposits in Bovine Brains. Journal of Alzheimer's Disease, 2016, 51, 875-887.	1.2	6
196	Serum C-Peptide, Visfatin, Resistin, and Ghrelin are Altered in Sporadic and GRN-Associated Frontotemporal Lobar Degeneration. Journal of Alzheimer's Disease, 2018, 61, 1053-1060.	1.2	6
197	Serum Copper is not Altered in Frontotemporal Lobar Degeneration. Journal of Alzheimer's Disease, 2018, 63, 1427-1432.	1.2	6
198	Association of rs3027178 polymorphism in the circadian clock gene PER1 with susceptibility to Alzheimer's disease and longevity in an Italian population. GeroScience, 2022, 44, 881-896.	2.1	6

#	Article	IF	CITATIONS
199	Tau missing from CSF. Journal of Neurology, 2007, 254, 107-109.	1.8	5
200	Polymorphic Genetic Markers of the GABA Catabolism Pathway in Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 77, 301-311.	1.2	5
201	Effects of Multiple Genetic Loci on Age atÂOnset in Frontotemporal Dementia. Journal of Alzheimer's Disease, 2017, 56, 1271-1278.	1.2	4
202	Asymptomatic Carriers of Presenilin-1 E318G Variant Show no Cerebrospinal Fluid Biochemical Signs Suggestive of Alzheimer's disease in a Family with Late-onset Dementia. Current Alzheimer Research, 2018, 16, 1-7.	0.7	4
203	Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis. Scientific Reports, 2020, 10, 12184.	1.6	4
204	Exploring Neurofilament Light Chain and Exosomes in the Genetic Forms of Frontotemporal Dementia. Frontiers in Neuroscience, 2022, 16, 758182.	1.4	4
205	Iron Serum Markers Profile in Frontotemporal Lobar Degeneration. Journal of Alzheimer's Disease, 2020, 78, 1373-1380.	1.2	3
206	An Automated Toolbox to Predict Single Subject Atrophy in Presymptomatic Granulin Mutation Carriers. Journal of Alzheimer's Disease, 2022, , 1-14.	1.2	3
207	Regulatory miRNAs in Cardiovascular and Alzheimer's Disease: A Focus on Copper. International Journal of Molecular Sciences, 2022, 23, 3327.	1.8	3
208	Modulation of Presenilin-1 Processing by Nitric Oxide during Apoptosis Induced by Serum Withdrawal and Glucose Deprivation. Annals of the New York Academy of Sciences, 1999, 893, 294-297.	1.8	2
209	Late onset neurodegenerative diseases: A theoretical point of view. Medical Hypotheses, 2009, 72, 102.	0.8	1
210	The Rise of the GRN C157KfsX97 Mutation in Southern Italy: Going Back to the Fall of the Western Roman Empire. Journal of Alzheimer's Disease, 2020, 78, 387-394.	1.2	1
211	Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. SSRN Electronic Journal, 0, , .	0.4	1