Wei Bing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6076141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Programmed Bacteria Death Induced by Carbon Dots with Different Surface Charge. Small, 2016, 12, 4713-4718.	10.0	202
2	A Multinuclear Metal Complex Based DNaseâ€Mimetic Artificial Enzyme: Matrix Cleavage for Combating Bacterial Biofilms. Angewandte Chemie - International Edition, 2016, 55, 10732-10736.	13.8	202
3	Bioinspired marine antifouling coatings: Status, prospects, and future. Progress in Materials Science, 2022, 124, 100889.	32.8	181
4	Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles. Nano Research, 2015, 8, 1648-1658.	10.4	179
5	Mussel Byssusâ€Like Reversible Metalâ€Chelated Supramolecular Complex Used for Dynamic Cellular Surface Engineering and Imaging. Advanced Functional Materials, 2015, 25, 3775-3784.	14.9	85
6	Versatile Dual Photoresponsive System for Precise Control of Chemical Reactions. ACS Nano, 2017, 11, 7770-7780.	14.6	55
7	Antifouling Technology Trends in Marine Environmental Protection. Journal of Bionic Engineering, 2021, 18, 239-263.	5.0	48
8	Antifouling performance and mechanism of elastic graphene–silicone rubber composite membranes. Journal of Materials Chemistry B, 2019, 7, 488-497.	5.8	43
9	Hydrogen-producing hyperthermophilic bacteria synthesized size-controllable fine gold nanoparticles with excellence for eradicating biofilm and antibacterial applications. Journal of Materials Chemistry B, 2018, 6, 4602-4609.	5.8	41
10	A H ₂ O ₂ -free depot for treating bacterial infection: localized cascade reactions to eradicate biofilms <i>in vivo</i> . Nanoscale, 2018, 10, 17656-17662.	5.6	39
11	A Multinuclear Metal Complex Based DNaseâ€Mimetic Artificial Enzyme: Matrix Cleavage for Combating Bacterial Biofilms. Angewandte Chemie, 2016, 128, 10890-10894.	2.0	36
12	Small Structure, Large Effect: Functional Surfaces Inspired by <i>Salvinia</i> Leaves. Small Structures, 2021, 2, 2100079.	12.0	29
13	Bioinspired PDMS–Phosphor–Silicone Rubber Sandwichâ€ S tructure Coatings for Combating Biofouling. Advanced Materials Interfaces, 2020, 7, 1901577.	3.7	28
14	Toward the Application of Graphene for Combating Marine Biofouling. Advanced Sustainable Systems, 2021, 5, .	5.3	27
15	Caldicellulosiruptor changbaiensis sp. nov., a cellulolytic and hydrogen-producing bacterium from a hot spring. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 293-297.	1.7	24
16	Combined Effects of Color and Elastic Modulus on Antifouling Performance: A Study of Graphene Oxide/Silicone Rubber Composite Membranes. Materials, 2019, 12, 2608.	2.9	22
17	Bioâ€Inspired Nonâ€Bactericidal Coating Used for Antibiofouling. Advanced Materials Technologies, 2019, 4, 1800480	5.8	22
18	Topographical nanostructures for physical sterilization. Drug Delivery and Translational Research, 2021, 11, 1376-1389.	5.8	17

Wei Bing

#	Article	IF	CITATIONS
19	A DNase-mimetic artificial enzyme for the eradication of drug-resistant bacterial biofilm infections. Nanoscale, 2022, 14, 2676-2685.	5.6	16
20	A biodegradable and near-infrared light-activatable photothermal nanoconvertor for bacterial inactivation. Journal of Materials Chemistry B, 2022, 10, 3834-3840.	5.8	13
21	Gaseous Plastron on Natural and Biomimetic Surfaces for Resisting Marine Biofouling. Molecules, 2021, 26, 2592.	3.8	12
22	An antiadhesion and antibacterial platform based on parylene F coatings. Progress in Organic Coatings, 2021, 151, 106021.	3.9	7
23	A synergistic antibacterial platform: combining mechanical and photothermal effects based on Van-MoS ₂ –Au nanocomposites. Nanotechnology, 2021, 32, 085102.	2.6	7
24	Chemically individual armoured bioreporter bacteria used for the in vivo sensing of ultra-trace toxic metal ions. Chemical Communications, 2017, 53, 8415-8418.	4.1	6
25	Exploring the antifouling effect of elastic deformation by DEM–CFD coupling simulation. RSC Advances, 2019, 9, 40855-40862.	3.6	6
26	Exploring the antifouling performance of non-bactericidal and bactericidal film for combating marine biofouling. Journal of the Taiwan Institute of Chemical Engineers, 2021, 126, 270-277.	5.3	6
27	Novel Anti-fouling Strategies of Live and Dead Soft Corals (Sarcophyton trocheliophorum): Combined Physical and Chemical Mechanisms. Journal of Bionic Engineering, 2020, 17, 677-685.	5.0	5
28	Catalytic asymmetric hydrogenation reaction by <i>in situ</i> formed ultra-fine metal nanoparticles in live thermophilic hydrogen-producing bacteria. Nanoscale, 2021, 13, 8024-8029.	5.6	5
29	Biofouling: Bioâ€Inspired Nonâ€Bactericidal Coating Used for Antibiofouling (Adv. Mater. Technol. 2/2019). Advanced Materials Technologies, 2019, 4, 1970014.	5.8	2
30	Bacterial adhesion properties of parylene C and D deposited on polydimethylsiloxane. New Journal of Chemistry, 0, , .	2.8	2