X Chris Le

List of Publications by Citations

Source: https://exaly.com/author-pdf/6075973/x-chris-le-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 15,206 310 109 h-index g-index citations papers 6.7 336 17,141 7.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
310	Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. <i>Chemical Society Reviews</i> , 2014 , 43, 3324-41	58.5	625
309	Arsenic binding to proteins. <i>Chemical Reviews</i> , 2013 , 113, 7769-92	68.1	458
308	DNA-mediated homogeneous binding assays for nucleic acids and proteins. <i>Chemical Reviews</i> , 2013 , 113, 2812-41	68.1	328
307	A microRNA-initiated DNAzyme motor operating in living cells. <i>Nature Communications</i> , 2017 , 8, 14378	17.4	322
306	Arsenic speciation analysis. <i>Talanta</i> , 2002 , 58, 77-96	6.2	292
305	Speciation of key arsenic metabolic intermediates in human urine. <i>Analytical Chemistry</i> , 2000 , 72, 5172-	7 7.8	286
304	Binding-induced fluorescence turn-on assay using aptamer-functionalized silver nanocluster DNA probes. <i>Analytical Chemistry</i> , 2012 , 84, 5170-4	7.8	285
303	Aptamer binding assays for proteins: the thrombin examplea review. <i>Analytica Chimica Acta</i> , 2014 , 837, 1-15	6.6	264
302	Electrochemical DNAzyme sensor for lead based on amplification of DNA-Au bio-bar codes. <i>Analytical Chemistry</i> , 2008 , 80, 6323-8	7.8	246
301	Occurrence of monomethylarsonous acid in urine of humans exposed to inorganic arsenic. <i>Chemical Research in Toxicology</i> , 2000 , 13, 693-7	4	233
300	Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 5213-7	11.5	219
299	Selection and analytical applications of aptamers. <i>TrAC - Trends in Analytical Chemistry</i> , 2006 , 25, 681-69	114.6	218
298	Human urinary arsenic excretion after one-time ingestion of seaweed, crab, and shrimp. <i>Clinical Chemistry</i> , 1994 , 40, 617-624	5.5	185
297	Inducible repair of thymine glycol detected by an ultrasensitive assay for DNA damage. <i>Science</i> , 1998 , 280, 1066-9	33.3	179
296	Speciation of Submicrogram per Liter Levels of Arsenic in Water: On-Site Species Separation Integrated with Sample Collection. <i>Environmental Science & Environmental Science </i>	10.3	167
295	Molecular Diagnosis of COVID-19: Challenges and Research Needs. <i>Analytical Chemistry</i> , 2020 , 92, 1019	6 7 18020	——)9 ₁₅₅
294	Dynamic DNA assemblies mediated by binding-induced DNA strand displacement. <i>Journal of the American Chemical Society</i> , 2013 , 135, 2443-6	16.4	154

293	Effect of arsenosugar ingestion on urinary arsenic speciation. Clinical Chemistry, 1998, 44, 539-550	5.5	145
292	Aptamers facilitating amplified detection of biomolecules. <i>Analytical Chemistry</i> , 2015 , 87, 274-92	7.8	142
291	Unstable trivalent arsenic metabolites, monomethylarsonous acid and dimethylarsinous acid. <i>Journal of Analytical Atomic Spectrometry</i> , 2001 , 16, 1409-1413	3.7	139
290	Excretion of arsenic in urine as a function of exposure to arsenic in drinking water. <i>Environmental Health Perspectives</i> , 1999 , 107, 663-7	8.4	138
289	Binding-Induced DNA Nanomachines Triggered by Proteins and Nucleic Acids. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 14326-30	16.4	133
288	Disruption of the arsenic (+3 oxidation state) methyltransferase gene in the mouse alters the phenotype for methylation of arsenic and affects distribution and retention of orally administered arsenate. <i>Chemical Research in Toxicology</i> , 2009 , 22, 1713-20	4	131
287	Possible role of dimethylarsinous acid in dimethylarsinic acid-induced urothelial toxicity and regeneration in the rat. <i>Chemical Research in Toxicology</i> , 2002 , 15, 1150-7	4	128
286	Determination of monomethylarsonous acid, a key arsenic methylation intermediate, in human urine. <i>Environmental Health Perspectives</i> , 2000 , 108, 1015-8	8.4	128
285	Evidence of hemoglobin binding to arsenic as a basis for the accumulation of arsenic in rat blood. <i>Chemical Research in Toxicology</i> , 2004 , 17, 1733-42	4	127
284	DNAzyme-Mediated Assays for Amplified Detection of Nucleic Acids and Proteins. <i>Analytical Chemistry</i> , 2018 , 90, 190-207	7.8	127
283	Exponential Isothermal Amplification of Nucleic Acids and Assays for Proteins, Cells, Small Molecules, and Enzyme Activities: An EXPAR Example. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 11856-11866	16.4	124
282	Detection of Escherichia coli O157:H7 using gold nanoparticle labeling and inductively coupled plasma mass spectrometry. <i>Analytical Chemistry</i> , 2010 , 82, 3399-403	7.8	124
281	Ultrasensitive detection of proteins by amplification of affinity aptamers. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 1576-80	16.4	122
280	Ultrasensitive assays for proteins. <i>Analyst, The</i> , 2007 , 132, 724-37	5	118
279	Aptamer-linked assay for thrombin using gold nanoparticle amplification and inductively coupled plasma-mass spectrometry detection. <i>Analytical Chemistry</i> , 2009 , 81, 7484-9	7.8	117
278	Selection of aptamers against live bacterial cells. <i>Analytical Chemistry</i> , 2008 , 80, 7812-9	7.8	117
277	Assembling DNA through affinity binding to achieve ultrasensitive protein detection. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 10698-705	16.4	115
276	Novel nuclear and mitochondrial glycosylases revealed by disruption of the mouse Nth1 gene encoding an endonuclease III homolog for repair of thymine glycols. <i>EMBO Journal</i> , 2002 , 21, 3486-93	13	115

275	Arsenic-induced bladder cancer in an animal model. <i>Toxicology and Applied Pharmacology</i> , 2007 , 222, 258-63	4.6	114
274	Sample Preparation and Storage Can Change Arsenic Speciation in Human Urine. <i>Clinical Chemistry</i> , 1999 , 45, 1988-1997	5.5	111
273	DMPS-arsenic challenge test. II. Modulation of arsenic species, including monomethylarsonous acid (MMA(III)), excreted in human urine. <i>Toxicology and Applied Pharmacology</i> , 2000 , 165, 74-83	4.6	110
272	Prereduction of arsenic(V) to arsenic(III), enhancement of the signal, and reduction of interferences by L-cysteine in the determination of arsenic by hydride generation. <i>Analytical Chemistry</i> , 1992 , 64, 667	- <i>6</i> 72	109
271	Comparative toxicity of arsenic metabolites in human bladder cancer EJ-1 cells. <i>Chemical Research in Toxicology</i> , 2011 , 24, 1586-96	4	106
270	Peer Reviewed: Arsenic Speciation. <i>Analytical Chemistry</i> , 2004 , 76, 26 A-33 A	7.8	106
269	Metabolomics analysis of TiO nanoparticles induced toxicological effects on rice (Oryza sativa L.). <i>Environmental Pollution</i> , 2017 , 230, 302-310	9.3	104
268	Antimony speciation and contamination of waters in the Xikuangshan antimony mining and smelting area, China. <i>Environmental Geochemistry and Health</i> , 2010 , 32, 401-13	4.7	104
267	Aptamer-based affinity chromatographic assays for thrombin. <i>Analytical Chemistry</i> , 2008 , 80, 7586-93	7.8	103
266	Aptamer-modified monolithic capillary chromatography for protein separation and detection. <i>Analytical Chemistry</i> , 2008 , 80, 3915-20	7.8	101
265	Binding of dimethylarsinous acid to cys-13alpha of rat hemoglobin is responsible for the retention of arsenic in rat blood. <i>Chemical Research in Toxicology</i> , 2007 , 20, 27-37	4	101
264	Arsenic speciation in urine from acute promyelocytic leukemia patients undergoing arsenic trioxide treatment. <i>Chemical Research in Toxicology</i> , 2004 , 17, 95-103	4	97
263	Detection of human immunodeficiency virus type 1 reverse transcriptase using aptamers as probes in affinity capillary electrophoresis. <i>Analytical Chemistry</i> , 2001 , 73, 6070-6	7.8	96
262	Interaction of trivalent arsenicals with metallothionein. Chemical Research in Toxicology, 2003, 16, 873-8	304	95
261	Short-column liquid chromatography with hydride generation atomic fluorescence detection for the speciation of arsenic. <i>Analytical Chemistry</i> , 1998 , 70, 1926-33	7.8	95
260	Speciation of Arsenic Compounds Using High-Performance Liquid Chromatography at Elevated Temperature and Selective Hydride Generation Atomic Fluorescence Detection. <i>Analytical Chemistry</i> , 1996 , 68, 4501-4506	7.8	92
259	Tunable aptamer capillary electrophoresis and its application to protein analysis. <i>Journal of the American Chemical Society</i> , 2008 , 130, 34-5	16.4	91
258	A molecular translator that acts by binding-induced DNA strand displacement for a homogeneous protein assay. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 9317-20	16.4	90

257	Thermal stability of DNA functionalized gold nanoparticles. <i>Bioconjugate Chemistry</i> , 2013 , 24, 1790-7	6.3	88
256	Selection and analytical applications of aptamers binding microbial pathogens. <i>TrAC - Trends in Analytical Chemistry</i> , 2011 , 30, 1587-1597	14.6	85
255	Comparative cytotoxicity of fourteen trivalent and pentavalent arsenic species determined using real-time cell sensing. <i>Journal of Environmental Sciences</i> , 2016 , 49, 113-124	6.4	83
254	Speciation of arsenic compounds by HPLC with hydride generation atomic absorption spectrometry and inductively coupled plasma mass spectrometry detection. <i>Talanta</i> , 1994 , 41, 495-502	6.2	83
253	Chronic arsenic exposure and oxidative stress: OGG1 expression and arsenic exposure, nail selenium, and skin hyperkeratosis in Inner Mongolia. <i>Environmental Health Perspectives</i> , 2006 , 114, 835-	. <mark>4</mark> 14	80
252	Use of quantum dots in the development of assays for cancer biomarkers. <i>Analytical and Bioanalytical Chemistry</i> , 2010 , 397, 3213-24	4.4	79
251	Volatile arsenic species released from Escherichia coli expressing the AsIII S-adenosylmethionine methyltransferase gene. <i>Environmental Science & Environmental Science & Env</i>	10.3	79
250	Signal Amplification in Living Cells: A Review of microRNA Detection and Imaging. <i>Analytical Chemistry</i> , 2020 , 92, 292-308	7.8	77
249	Universal strategy to engineer catalytic DNA hairpin assemblies for protein analysis. <i>Analytical Chemistry</i> , 2015 , 87, 8063-6	7.8	72
248	Isothermal Amplification and Ambient Visualization in a Single Tube for the Detection of SARS-CoV-2 Using Loop-Mediated Amplification and CRISPR Technology. <i>Analytical Chemistry</i> , 2020 , 92, 16204-16212	7.8	72
247	DNA aptamers binding to multiple prevalent M-types of Streptococcus pyogenes. <i>Analytical Chemistry</i> , 2011 , 83, 3640-7	7.8	71
246	Studies of proteinDNA interactions by capillary electrophoresis/laser-induced fluorescence polarization. <i>Analytical Chemistry</i> , 2000 , 72, 5583-9	7.8	71
245	Binding-induced formation of DNA three-way junctions and its application to protein detection and DNA strand displacement. <i>Analytical Chemistry</i> , 2013 , 85, 10835-41	7.8	70
244	Speciation of arsenic compounds in some marine organisms. <i>Environmental Science & Environmental Scien</i>	10.3	68
243	Evidence for toxicity differences between inorganic arsenite and thioarsenicals in human bladder cancer cells. <i>Toxicology and Applied Pharmacology</i> , 2009 , 238, 133-40	4.6	66
242	Speciation of arsenic using solid phase extraction cartridges. <i>Journal of Environmental Monitoring</i> , 2001 , 3, 81-5		65
241	Binding-induced DNA assembly and its application to yoctomole detection of proteins. <i>Analytical Chemistry</i> , 2012 , 84, 877-84	7.8	63
240	Effect of cysteine on the speciation of arsenic by using hydride generation atomic absorption spectrometry. <i>Analytica Chimica Acta</i> , 1994 , 285, 277-285	6.6	62

239	Dietary administration of sodium arsenite to rats: relations between dose and urinary concentrations of methylated and thio-metabolites and effects on the rat urinary bladder epithelium. <i>Toxicology and Applied Pharmacology</i> , 2010 , 244, 99-105	4.6	59
238	Attenuation of DNA damage-induced p53 expression by arsenic: a possible mechanism for arsenic co-carcinogenesis. <i>Molecular Carcinogenesis</i> , 2008 , 47, 508-18	5	59
237	Aptamer capturing of enzymes on magnetic beads to enhance assay specificity and sensitivity. <i>Analytical Chemistry</i> , 2011 , 83, 9234-6	7.8	58
236	Monitoring biosynthetic transformations of N-acetyllactosamine using fluorescently labeled oligosaccharides and capillary electrophoretic separation. <i>Analytical Biochemistry</i> , 1995 , 227, 368-76	3.1	57
235	Speciation of arsenic compounds by using ion-pair chromatography with atomic spectrometry and mass spectrometry detection. <i>Journal of Chromatography A</i> , 1997 , 764, 55-64	4.5	56
234	Arsenic-induced congenital malformations in genetically susceptible folate binding protein-2 knockout mice. <i>Toxicology and Applied Pharmacology</i> , 2001 , 177, 238-46	4.6	56
233	Applications of aptamer affinity chromatography. <i>TrAC - Trends in Analytical Chemistry</i> , 2012 , 41, 46-57	14.6	55
232	Nuclear-matter density distribution in the neutron-rich nuclei 12,14Be from proton elastic scattering in inverse kinematics. <i>Nuclear Physics A</i> , 2012 , 875, 8-28	1.3	54
231	Reduction of interferences in the determination of germanium by hydride generation and atomic emission spectrometry. <i>Analytica Chimica Acta</i> , 1990 , 229, 239-247	6.6	52
230	Arsenic on the hands of children after playing in playgrounds. <i>Environmental Health Perspectives</i> , 2004 , 112, 1375-80	8.4	51
229	A new continuous hydride generator for the determination of arsenic, Antimony and tin by hybride generation atomic absorption spectrometry. <i>Analytica Chimica Acta</i> , 1992 , 258, 307-315	6.6	51
228	Therapeutic and analytical applications of arsenic binding to proteins. <i>Metallomics</i> , 2015 , 7, 39-55	4.5	50
227	Arsenic Metabolites, Including N-Acetyl-4-hydroxy-m-arsanilic Acid, in Chicken Litter from a Roxarsone-Feeding Study Involving 1600 Chickens. <i>Environmental Science & Environmental &</i>	10.3	50
226	Arsenic speciation analysis in human saliva. <i>Clinical Chemistry</i> , 2008 , 54, 163-71	5.5	50
225	Analyses of micronuclei in exfoliated epithelial cells from individuals chronically exposed to arsenic via drinking water in inner Mongolia, China. <i>Journal of Toxicology and Environmental Health - Part A: Current Issues</i> , 2001 , 64, 473-84	3.2	50
224	Fluorescence polarization studies of affinity interactions in capillary electrophoresis. <i>Analytical Chemistry</i> , 1999 , 71, 4183-9	7.8	50
223	Bioanalytical applications of aptamer and molecular-beacon probes in fluorescence-affinity assays. <i>TrAC - Trends in Analytical Chemistry</i> , 2009 , 28, 878-892	14.6	46
222	Mouse arsenic (+3 oxidation state) methyltransferase genotype affects metabolism and tissue dosimetry of arsenicals after arsenite administration in drinking water. <i>Toxicological Sciences</i> , 2011 , 124–320-6	4.4	46

(2014-2009)

221	Identification of arsenic-binding proteins in human cells by affinity chromatography and mass spectrometry. <i>Analytical Chemistry</i> , 2009 , 81, 4144-52	7.8	45	
220	DNA wrapping is required for DNA damage recognition in the Escherichia coli DNA nucleotide excision repair pathway. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 12849-54	11.5	45	
219	Speciation analysis of arsenic in groundwater from Inner Mongolia with an emphasis on acid-leachable particulate arsenic. <i>Analytica Chimica Acta</i> , 2006 , 555, 181-187	6.6	45	
218	Analysis by capillary electrophoresis-laser-induced fluorescence detection of oligosaccharides produced from enzyme reactions. <i>Journal of Chromatography A</i> , 1995 , 716, 215-20	4.5	45	
217	Determination of urinary arsenic and impact of dietary arsenic intake. <i>Talanta</i> , 1993 , 40, 185-93	6.2	45	
216	Increased mortality associated with well-water arsenic exposure in Inner Mongolia, China. International Journal of Environmental Research and Public Health, 2009, 6, 1107-23	4.6	44	
215	Differential cytotoxic effects of arsenic compounds in human acute promyelocytic leukemia cells. <i>Toxicology and Applied Pharmacology</i> , 2009 , 239, 64-70	4.6	44	
214	Arsenic Species in Chicken Breast: Temporal Variations of Metabolites, Elimination Kinetics, and Residual Concentrations. <i>Environmental Health Perspectives</i> , 2016 , 124, 1174-81	8.4	44	
213	Differentiation and detection of PDGF isomers and their receptors by tunable aptamer capillary electrophoresis. <i>Analytical Chemistry</i> , 2009 , 81, 7795-800	7.8	43	
212	Effects of dietary folate intake and folate binding protein-1 (Folbp1) on urinary speciation of sodium arsenate in mice. <i>Toxicology Letters</i> , 2003 , 145, 167-74	4.4	43	
211	Kinetics of Proximity-Induced Intramolecular DNA Strand Displacement. <i>Analytical Chemistry</i> , 2016 , 88, 8152-7	7.8	43	
210	Constructing real-time, wash-free, and reiterative sensors for cell surface proteins using binding-induced dynamic DNA assembly. <i>Chemical Science</i> , 2015 , 6, 5729-5733	9.4	42	
209	Well water arsenic exposure, arsenic induced skin-lesions and self-reported morbidity in Inner Mongolia. <i>International Journal of Environmental Research and Public Health</i> , 2009 , 6, 1010-25	4.6	42	
208	Human urinary arsenic excretion after one-time ingestion of seaweed, crab, and shrimp. <i>Clinical Chemistry</i> , 1994 , 40, 617-24	5.5	42	
207	Polymeric micelles for GSH-triggered delivery of arsenic species to cancer cells. <i>Biomaterials</i> , 2014 , 35, 7088-100	15.6	41	
206	A review on arsenic concentrations in Canadian drinking water. <i>Environmental Reviews</i> , 2010 , 18, 291-3	07 .5	41	
205	CRISPR technology incorporating amplification strategies: molecular assays for nucleic acids, proteins, and small molecules. <i>Chemical Science</i> , 2021 , 12, 4683-4698	9.4	40	
204	Liquid chromatography combined with atomic and molecular mass spectrometry for speciation of arsenic in chicken liver. <i>Journal of Chromatography A</i> , 2014 , 1370, 40-9	4.5	39	

203	Arsenic in drinking waterEecent examples and updates from Southeast Asia. <i>Current Opinion in Environmental Science and Health</i> , 2019 , 7, 126-135	8.1	38
202	A novel pathway for arsenic elimination: human multidrug resistance protein 4 (MRP4/ABCC4) mediates cellular export of dimethylarsinic acid (DMAV) and the diglutathione conjugate of monomethylarsonous acid (MMAIII). <i>Molecular Pharmacology</i> , 2014 , 86, 168-79	4.3	38
201	Fluorescence polarization detection for affinity capillary electrophoresis. <i>Electrophoresis</i> , 2002 , 23, 903	-8 .6	38
200	Arsenobetaine: the ongoing mystery. <i>National Science Review</i> , 2016 , 3, 451-458	10.8	38
199	Assays for cytokines using aptamers. <i>Methods</i> , 2006 , 38, 324-30	4.6	37
198	Speciation of dimethylarsinous acid and trimethylarsine oxide in urine from rats fed with dimethylarsinic acid and dimercaptopropane sulfonate. <i>Analytical Chemistry</i> , 2003 , 75, 6463-8	7.8	37
197	Competitive immunoassay for staphylococcal enterotoxin A using capillary electrophoresis with laser-induced fluorescence detection. <i>Journal of Chromatography A</i> , 1999 , 853, 545-53	4.5	37
196	Direct large volume injection ultra-high performance liquid chromatography-tandem mass spectrometry determination of artificial sweeteners sucralose and acesulfame in well water. <i>Journal of Chromatography A</i> , 2014 , 1359, 156-61	4.5	36
195	Decomposition of organoarsenic compounds by using a microwave oven and subsequent determination by flow injection-hydride generation-atomic absorption spectrometry. <i>Applied Organometallic Chemistry</i> , 1992 , 6, 161-171	3.1	36
194	Cardiovascular disease and arsenic exposure in Inner Mongolia, China: a case control study. <i>Environmental Health</i> , 2015 , 14, 35	6	35
193	Arsenic speciation in the blood of arsenite-treated F344 rats. <i>Chemical Research in Toxicology</i> , 2013 , 26, 952-62	4	35
192	Monomethylarsenic diglutathione transport by the human multidrug resistance protein 1 (MRP1/ABCC1). <i>Drug Metabolism and Disposition</i> , 2011 , 39, 2298-304	4	35
191	Human nails as a biomarker of arsenic exposure from well water in Inner Mongolia: comparing atomic fluorescence spectrometry and neutron activation analysis. <i>Biomarkers</i> , 2005 , 10, 95-104	2.6	35
190	Arsenic speciation analysis: A review with an emphasis on chromatographic separations. <i>TrAC - Trends in Analytical Chemistry</i> , 2020 , 123, 115770	14.6	35
189	Methylated and thiolated arsenic species for environmental and health research - A review on synthesis and characterization. <i>Journal of Environmental Sciences</i> , 2016 , 49, 7-27	6.4	35
188	Speciation of arsenic A review of phenylarsenicals and related arsenic metabolites. <i>TrAC - Trends in Analytical Chemistry</i> , 2018 , 104, 171-182	14.6	35
187	Simultaneous speciation of selenium and arsenic using elevated temperature liquid chromatography separation with inductively coupled plasma mass spectrometry detection. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1998, 53, 899-909	3.1	34
186	Enhancement of immunocomplex detection and application to assays for DNA adduct of benzo[a]pyrene. <i>Analytical Chemistry</i> , 2003 , 75, 247-54	7.8	34

(2010-2018)

185	Reduction of Background Generated from Template-Template Hybridizations in the Exponential Amplification Reaction. <i>Analytical Chemistry</i> , 2018 , 90, 11033-11039	7.8	33
184	Quantum dots enhanced ultrasensitive detection of DNA adducts. <i>Analytical Chemistry</i> , 2009 , 81, 1028	5 -9 .8	33
183	Competitive immunoassay for cyclosporine using capillary electrophoresis with laser induced fluorescence polarization detection. <i>Biomedical Applications</i> , 1998 , 714, 59-67		33
182	Ultrasensitive protein-DNA binding assays. Current Opinion in Biotechnology, 2003, 14, 65-73	11.4	33
181	Migration time correction for the analysis of derivatized amino acids and oligosaccharides by micellar capillary electrochromatography. <i>Journal of Chromatography A</i> , 2000 , 869, 375-84	4.5	33
180	Methylated Phenylarsenical Metabolites Discovered in Chicken Liver. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 6773-6777	16.4	32
179	DNA-driven focusing for protein-DNA binding assays using capillary electrophoresis. <i>Analytical Chemistry</i> , 2005 , 77, 4985-90	7.8	32
178	Complementary chromatography separation combined with hydride generation-inductively coupled plasma mass spectrometry for arsenic speciation in human urine. <i>Analytica Chimica Acta</i> , 2010 , 675, 71-5	6.6	31
177	Study of interactions between arsenicals and thioredoxins (human and E. coli) using mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2007 , 21, 3658-66	2.2	31
176	Effect of arsenosugar ingestion on urinary arsenic speciation. Clinical Chemistry, 1998, 44, 539-50	5.5	31
175	Enzyme-assisted extraction and liquid chromatography mass spectrometry for the determination of arsenic species in chicken meat. <i>Analytica Chimica Acta</i> , 2015 , 888, 1-9	6.6	30
174	Biological and behavioral factors modify urinary arsenic metabolic profiles in a U.S. population. <i>Environmental Health</i> , 2016 , 15, 62	6	30
173	Biological and behavioral factors modify biomarkers of arsenic exposure in a U.S. population. <i>Environmental Research</i> , 2013 , 126, 134-44	7.9	30
172	Impact of petroleum coke characteristics on the adsorption of the organic fractions from oil sands process-affected water. <i>International Journal of Environmental Science and Technology</i> , 2014 , 11, 2037-7	2030	29
171	DNase-mediated single-cycle selection of aptamers for proteins blotted on a membrane. <i>Analytical Chemistry</i> , 2012 , 84, 7603-6	7.8	29
170	Low pressure chromatographic separation of inorganic arsenic species using solid phase extraction cartridges. <i>Talanta</i> , 1998 , 47, 787-96	6.2	29
169	Study of binding stoichiometries of the human immunodeficiency virus type 1 reverse transcriptase by capillary electrophoresis and laser-induced fluorescence polarization using aptamers as probes. <i>Electrophoresis</i> , 2006 , 27, 433-41	3.6	29
168	Electrospray ionization mass spectrometry characterization of interactions of newly identified water disinfection byproducts halobenzoquinones with oligodeoxynucleotides. <i>Environmental Science & Environmental Science & En</i>	10.3	28

167	Single cell studies of enzymatic hydrolysis of a tetramethylrhodamine labeled triglucoside in yeast. <i>Glycobiology</i> , 1999 , 9, 219-25	5.8	28
166	Convenient method for the determination of trace amounts of germanium by hydride generation direct current plasma atomic emission spectrometry: interference reduction by L-cystine and L-cysteine. <i>Journal of Analytical Atomic Spectrometry</i> , 1989 , 4, 227	3.7	28
165	Interference reduction by L-cystine in the determination of arsenic by hydride generation. <i>Analytical Chemistry</i> , 1988 , 60, 1185-1188	7.8	28
164	Nucleic acid aptamers improving fluorescence anisotropy and fluorescence polarization assays for small molecules. <i>TrAC - Trends in Analytical Chemistry</i> , 2019 , 110, 401-409	14.6	28
163	An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes. <i>Methods</i> , 2016 , 97, 51-7	4.6	27
162	Arsenic speciation in saliva of acute promyelocytic leukemia patients undergoing arsenic trioxide treatment. <i>Analytical and Bioanalytical Chemistry</i> , 2013 , 405, 1903-11	4.4	27
161	Glutathione-mediated detoxification of halobenzoquinone drinking water disinfection byproducts in T24 cells. <i>Toxicological Sciences</i> , 2014 , 141, 335-43	4.4	27
160	First feasibility experiment for the EXL project with prototype detectors at the ESR storage ring. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011 , 634, 77-84	1.2	27
159	Competitive immunoassay for vancomycin using capillary electrophoresis with laser-induced fluorescence detection. <i>Analyst, The</i> , 2002 , 127, 1633-7	5	27
158	Polymorphic variants of MRP4/ABCC4 differentially modulate the transport of methylated arsenic metabolites and physiological organic anions. <i>Biochemical Pharmacology</i> , 2016 , 120, 72-82	6	27
157	Study of the enzymatic transformation of fluorescently labeled oligosaccharides in human epidermoid cells using capillary electrophoresis with laser-induced fluorescence detection. <i>Journal of Chromatography A</i> , 1997 , 781, 515-22	4.5	26
156	Immunoassays using capillary electrophoresis laser induced fluorescence detection for DNA adducts. <i>Analytica Chimica Acta</i> , 2003 , 500, 13-20	6.6	26
155	"One-pot" fabrication of clickable monoliths for enzyme reactors. <i>Chemical Communications</i> , 2013 , 49, 1407-9	5.8	25
154	p-Azidophenylarsenoxide: An Arsenical "Bait" for the In Situ Capture and Identification of Cellular Arsenic-Binding Proteins. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 14051-14056	16.4	25
153	Competitive protection of aptamer-functionalized gold nanoparticles by controlling the DNA assembly. <i>Analytical Chemistry</i> , 2011 , 83, 6464-7	7.8	24
152	Identification of reactive cysteines in a protein using arsenic labeling and collision-induced dissociation tandem mass spectrometry. <i>Journal of Proteome Research</i> , 2008 , 7, 3080-90	5.6	24
151	Detection of DNA adducts of benzo[a]pyrene using immunoelectrophoresis with laser-induced fluorescence. Analysis of A549 cells. <i>Journal of Chromatography A</i> , 2001 , 924, 377-86	4.5	24
150	Binding stoichiometry of DNA adducts with antibody studied by capillary electrophoresis and laser-induced fluorescence. <i>Analytical Chemistry</i> , 2002 , 74, 3714-9	7.8	24

149	Synthesis, characterization, and applications of a fluorescent probe of DNA damage. <i>Chemical Research in Toxicology</i> , 2001 , 14, 1513-22	4	24
148	CRISPR/Cas12a-mediated gold nanoparticle aggregation for colorimetric detection of SARS-CoV-2. <i>Chemical Communications</i> , 2021 , 57, 6871-6874	5.8	24
147	Metabolomics and transcriptomics reveal defense mechanism of rice (Oryza sativa) grains under stress of 2,2',4,4'-tetrabromodiphenyl ether. <i>Environment International</i> , 2019 , 133, 105154	12.9	23
146	Immunoassay of P-glycoprotein on single cell by capillary electrophoresis with laser induced fluorescence detection. <i>Analytica Chimica Acta</i> , 2006 , 556, 340-346	6.6	23
145	Developmental consequences of in utero sodium arsenate exposure in mice with folate transport deficiencies. <i>Toxicology and Applied Pharmacology</i> , 2005 , 203, 18-26	4.6	23
144	Determination of arsenic metabolic complex excreted in human urine after administration of sodium 2,3-dimercapto-1-propane sulfonate. <i>Chemical Research in Toxicology</i> , 2002 , 15, 1318-23	4	23
143	Capillary electrophoresis coupled with laser-induced fluorescence polarization as a hybrid approach to ultrasensitive immunoassays. <i>Journal of Chromatography A</i> , 1999 , 853, 555-62	4.5	23
142	Application of signal enhancement by easily ionized elements in hydride generation direct current plasma atomic emission spectrometric determination of arsenic, antimony, germanium, tin, and lead. <i>Analytical Chemistry</i> , 1989 , 61, 1175-1178	7.8	23
141	Determination of trace amounts of tin by hydride generation direct current plasma atomic emission spectrometry: interference reduction by L-cystine. <i>Analyst, The</i> , 1988 , 113, 1377	5	23
140	Characterization of natural organic matter in water for optimizing water treatment and minimizing disinfection by-product formation. <i>Journal of Environmental Sciences</i> , 2016 , 42, 1-5	6.4	23
139	ATPase activity tightly regulates RecA nucleofilaments to promote homologous recombination. <i>Cell Discovery</i> , 2017 , 3, 16053	22.3	22
138	Biomonitoring of arsenic in urine and saliva of children playing on playgrounds constructed from chromated copper arsenate-treated wood. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	22
137	Speciation of vanadium in oilsand coke and bacterial culture by high performance liquid chromatography inductively coupled plasma mass spectrometry. <i>Analytica Chimica Acta</i> , 2007 , 602, 17-	2 5 .6	22
136	Genetic predisposition to the cytotoxicity of arsenic: the role of DNA damage and ATM. <i>FASEB Journal</i> , 2003 , 17, 2310-2	0.9	22
135	Capillary electrophoretic immunoassays for digoxin and gentamicin with laser-induced fluorescence polarization detection. <i>Biomedical Applications</i> , 1999 , 734, 31-8		22
134	N-Propargyl Caffeate Amide (PACA) Potentiates Nerve Growth Factor (NGF)-Induced Neurite Outgrowth and Attenuates 6-Hydroxydopamine (6-OHDA)-Induced Toxicity by Activating the Nrf2/HO-1 Pathway. <i>ACS Chemical Neuroscience</i> , 2015 , 6, 1560-9	5.7	21
133	Metabolomic analysis of two rice (Oryza sativa) varieties exposed to 2, 2', 4, 4'-tetrabromodiphenyl ether. <i>Environmental Pollution</i> , 2018 , 237, 308-317	9.3	21
132	Methylated pentavalent arsenic metabolites are bifunctional inducers, as they induce cytochrome P450 1A1 and NAD(P)H:quinone oxidoreductase through AhR- and Nrf2-dependent mechanisms. Free Radical Biology and Medicine, 2014, 67, 171-87	7.8	21

131	Formation of methylated oxyarsenicals and thioarsenicals in wild-type and arsenic (+3 oxidation state) methyltransferase knockout mice exposed to arsenate. <i>Analytical and Bioanalytical Chemistry</i> , 2013 , 405, 1885-91	4.4	21
130	Binding-Induced DNA Nanomachines Triggered by Proteins and Nucleic Acids. <i>Angewandte Chemie</i> , 2015 , 127, 14534-14538	3.6	21
129	Zinc exposure in Chinese foundry workers. American Journal of Industrial Medicine, 1999, 35, 574-80	2.7	21
128	Sample preparation and storage can change arsenic speciation in human urine. <i>Clinical Chemistry</i> , 1999 , 45, 1988-97	5.5	21
127	Rice: Reducing arsenic content by controlling water irrigation. <i>Journal of Environmental Sciences</i> , 2015 , 30, 129-31	6.4	20
126	New method and detection of high concentrations of monomethylarsonous acid detected in contaminated groundwater. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	20
125	Inorganic arsenic-induced intramitochondrial granules in mouse urothelium. <i>Toxicologic Pathology</i> , 2008 , 36, 999-1005	2.1	19
124	Boric acid-assisted anion-exchange chromatography for separating arsenic species. <i>Analytica Chimica Acta</i> , 2004 , 526, 69-76	6.6	19
123	Development of a tetramethylrhodamine-labeled probe for a capillary electrophoresis-based competitive immunoassay of staphylococcal enterotoxin B. <i>Analytica Chimica Acta</i> , 2002 , 457, 21-28	6.6	19
122	Bacterial Transformation of Pyrene in a Marine Environment. <i>Environmental Science & Environmental Sci</i>	10.3	19
121	Amplified binding-induced homogeneous assay through catalytic cycling of analyte for ultrasensitive protein detection. <i>Chemical Communications</i> , 2016 , 52, 1816-9	5.8	18
120	Biotransformation of arsenic-containing roxarsone by an aerobic soil bacterium Enterobacter sp. CZ-1. <i>Environmental Pollution</i> , 2019 , 247, 482-487	9.3	17
119	Characterization of arsenic hepatobiliary transport using sandwich-cultured human hepatocytes. <i>Toxicological Sciences</i> , 2015 , 145, 307-20	4.4	17
118	Biomarkers of arsenic exposure and effects in a Canadian rural population exposed through groundwater consumption. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2014 , 24, 127-	.34.7	17
117	Plant Natural Products Calycosin and Gallic Acid Synergistically Attenuate Neutrophil Infiltration and Subsequent Injury in Isoproterenol-Induced Myocardial Infarction: A Possible Role for Leukotriene B4 12-Hydroxydehydrogenase?. <i>Oxidative Medicine and Cellular Longevity</i> , 2015 , 2015, 434	6.7 1052	17
116	Mesoporous materials in peptidome analysis. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 351	8-9 6.4	17
115	Arsenic speciation in hair and nails of acute promyelocytic leukemia (APL) patients undergoing arsenic trioxide treatment. <i>Talanta</i> , 2018 , 184, 446-451	6.2	16
114	Terpolymer Micelles for the Delivery of Arsenic to Breast Cancer Cells: The Effect of Chain Sequence on Polymeric Micellar Characteristics and Cancer Cell Uptake. <i>Molecular Pharmaceutics</i> , 2016, 13, 4021-4033	5.6	16

(2015-2018)

113	N-Propargyl Caffeamide Skews Macrophages Towards a Resolving M2-Like Phenotype Against Myocardial Ischemic Injury via Activating Nrf2/HO-1 Pathway and Inhibiting NF- B Pathway. <i>Cellular Physiology and Biochemistry</i> , 2018 , 47, 2544-2557	3.9	16	
112	Binding-Induced Molecular Amplifier as a Universal Detection Platform for Biomolecules and Biomolecular Interaction. <i>Analytical Chemistry</i> , 2018 , 90, 8651-8657	7.8	16	
111	Sequential strand displacement beacon for detection of DNA coverage on functionalized gold nanoparticles. <i>Analytical Chemistry</i> , 2014 , 86, 6138-43	7.8	16	
110	Uptake and speciation of vanadium in the benthic invertebrate Hyalella azteca. <i>Environmental Science & Environmental </i>	10.3	16	
109	Chromium on the hands of children after playing in playgrounds built from chromated copper arsenate (CCA)-treated wood. <i>Environmental Health Perspectives</i> , 2006 , 114, 460-5	8.4	16	
108	Cytotoxicity, apoptosis and DNA damage induced by Alpinia galanga rhizome extract. <i>Planta Medica</i> , 2007 , 73, 748-54	3.1	16	
107	Measuring DNA damage using capillary electrophoresis with laser-induced fluorescence detection. <i>Methods</i> , 2000 , 22, 157-63	4.6	16	
106	The CRISPR-Cas toolbox for analytical and diagnostic assay development. <i>Chemical Society Reviews</i> , 2021 , 50, 11844-11869	58.5	16	
105	Binding-Induced DNA Dissociation Assay for Small Molecules: Sensing Aflatoxin B1. <i>ACS Sensors</i> , 2018 , 3, 2590-2596	9.2	16	
104	Cytotoxicity of combinations of arsenicals on rat urinary bladder urothelial cells in vitro. <i>Toxicology</i> , 2008 , 249, 69-74	4.4	15	
103	Effects of dietary folate intake and folate binding protein-2 (Folbp2) on urinary speciation of sodium arsenate in mice. <i>Environmental Toxicology and Pharmacology</i> , 2005 , 19, 1-7	5.8	15	
102	Aptamer binding assays and molecular interaction studies using fluorescence anisotropy - A review. <i>Analytica Chimica Acta</i> , 2020 , 1125, 267-278	6.6	14	
101	Removal of nanoparticles by coagulation. <i>Journal of Environmental Sciences</i> , 2015 , 38, 168-71	6.4	14	
100	Characterization of intracellular inclusions in the urothelium of mice exposed to inorganic arsenic. <i>Toxicological Sciences</i> , 2014 , 137, 36-46	4.4	14	
99	Analysis of oxidized multi-walled carbon nanotubes in single K562 cells by capillary electrophoresis with laser-induced fluorescence. <i>Analytical and Bioanalytical Chemistry</i> , 2007 , 387, 119-26	4.4	14	
98	Identification of Methylated Dithioarsenicals in the Urine of Rats Fed with Sodium Arsenite. <i>Chemical Research in Toxicology</i> , 2016 , 29, 1480-7	4	14	
97	Is there a silver lining? Aggregation and photo-transformation of silver nanoparticles in environmental waters. <i>Journal of Environmental Sciences</i> , 2015 , 34, 259-62	6.4	13	
96	Cadmium in soybeans and the relevance to human exposure. <i>Journal of Environmental Sciences</i> , 2015 , 37, 157-62	6.4	13	

95	Characterization of Mechanisms of Glutathione Conjugation with Halobenzoquinones in Solution and HepG2 Cells. <i>Environmental Science & Environmental S</i>	10.3	13
94	Accumulation and Transport of Roxarsone, Arsenobetaine, and Inorganic Arsenic Using the Human Immortalized Caco-2 Cell Line. <i>Journal of Agricultural and Food Chemistry</i> , 2016 , 64, 8902-8908	5.7	13
93	Antibody-Bridged Beacon for Homogeneous Detection of Small Molecules. <i>Analytical Chemistry</i> , 2018 , 90, 9667-9672	7.8	13
92	Systemic distribution and speciation of diphenylarsinic acid fed to rats. <i>Toxicology and Applied Pharmacology</i> , 2009 , 237, 214-20	4.6	13
91	Microbial degradation of pyrene and characterization of a metabolite. <i>Science of the Total Environment</i> , 1996 , 177, 17-29	10.2	13
90	Establishment and characterization of arsenic trioxide resistant KB/ATO cells. <i>Acta Pharmaceutica Sinica B</i> , 2017 , 7, 564-570	15.5	12
89	The Effects of SELEX Conditions on the Resultant Aptamer Pools in the Selection of Aptamers Binding to Bacterial Cells. <i>Journal of Molecular Evolution</i> , 2015 , 81, 194-209	3.1	12
88	A Genome-Editing Nanomachine Constructed with a Clustered Regularly Interspaced Short Palindromic Repeats System and Activated by Near-Infrared Illumination. <i>ACS Nano</i> , 2020 , 14, 2817-282	26 ^{16.7}	12
87	Transfer of arsenic from poultry feed to poultry litter: A mass balance study. <i>Science of the Total Environment</i> , 2018 , 630, 302-307	10.2	12
86	Yoctomole detection of proteins using solid phase binding-induced DNA assembly. <i>Methods</i> , 2013 , 64, 322-30	4.6	12
85	Targeted Enlargement of Aptamer Functionalized Gold Nanoparticles for Quantitative Protein Analysis. <i>Proteomes</i> , 2016 , 5,	4.6	12
84	DNA-Assemblierung mittels AffinitEsbindung fEdie ultraempfindliche Proteindetektion. <i>Angewandte Chemie</i> , 2013 , 125, 10894-10902	3.6	12
83	Enzymatic digestion and chromatographic analysis of arsenic species released from proteins. Journal of Chromatography A, 2009 , 1216, 3985-91	4.5	12
82	Ultrasensitive Detection of Proteins by Amplification of Affinity Aptamers. <i>Angewandte Chemie</i> , 2006 , 118, 1606-1610	3.6	12
81	Integrating Reverse Transcription Recombinase Polymerase Amplification with CRISPR Technology for the One-Tube Assay of RNA. <i>Analytical Chemistry</i> , 2021 , 93, 12808-12816	7.8	12
80	Arsenic speciation in cattail (Typha latifolia) using chromatography and mass spectrometry. <i>Molecular Nutrition and Food Research</i> , 2009 , 53, 566-71	5.9	11
79	Elevation of cellular BPDE uptake by human cells: a possible factor contributing to co-carcinogenicity by arsenite. <i>Environmental Health Perspectives</i> , 2006 , 114, 1832-7	8.4	11
78	Pretreatment with periodate-oxidized adenosine enhances developmental toxicity of inorganic arsenic in mice. <i>Birth Defects Research Part B: Developmental and Reproductive Toxicology</i> , 2003 , 68, 335	-43	11

(2001-2005)

77	2002 W.A.E. McBryde Award Lecture? Affinity recognition, capillary electrophoresis, and laser-induced fluorescence polarization for ultrasensitive bioanalysis. <i>Canadian Journal of Chemistry</i> , 2005 , 83, 185-194	0.9	11
76	Arsenic species in electronic cigarettes: Determination and potential health risk. <i>Journal of Environmental Sciences</i> , 2020 , 91, 168-176	6.4	10
75	Benefits and risks associated with consumption of Great Lakes fish containing omega-3 fatty acids and polychlorinated biphenyls (PCBs). <i>Journal of Environmental Sciences</i> , 2016 , 41, 1-5	6.4	10
74	Quantitative synthesis of protein-DNA conjugates with 1 : 1 stoichiometry. <i>Chemical Communications</i> , 2018 , 54, 7491-7494	5.8	10
73	A phenotypic screening platform to identify small molecule modulators of Chlamydomonas reinhardtii growth, motility and photosynthesis. <i>Genome Biology</i> , 2012 , 13, R105	18.3	10
72	MEKC-LIF analysis of rhodamine123 delivered by carbon nanotubes in K562 cells. <i>Electrophoresis</i> , 2009 , 30, 1906-12	3.6	10
71	Identification and characterization of cysteinyl exposure in proteins by selective mercury labeling and nano-electrospray ionization quadrupole time-of-flight mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2010 , 24, 1523-32	2.2	10
70	CE-LIF coupled with flow cytometry for high-throughput quantitation of fluorophores in single intact cells. <i>Electrophoresis</i> , 2006 , 27, 3452-9	3.6	10
69	Studying developmental neurotoxic effects of bisphenol A (BPA) using embryonic stem cells. Journal of Environmental Sciences, 2015 , 36, 173-7	6.4	9
68	Inhibition of nucleotide excision repair by arsenic. <i>Science Bulletin</i> , 2013 , 58, 214-221		9
67	Consumption of rice and fish in an electronic waste recycling area contributes significantly to total daily intake of mercury. <i>Journal of Environmental Sciences</i> , 2015 , 38, 83-6	6.4	9
66	A Molecular Translator that Acts by Binding-Induced DNA Strand Displacement for a Homogeneous Protein Assay. <i>Angewandte Chemie</i> , 2012 , 124, 9451-9454	3.6	9
65	Arsenic urinary speciation in Mthfr deficient mice injected with sodium arsenate. <i>Toxicology Letters</i> , 2012 , 215, 214-8	4.4	9
64	Multidrug resistance protein 1 (ABCC1) confers resistance to arsenic compounds in human myeloid leukemic HL-60 cells. <i>Archives of Toxicology</i> , 2013 , 87, 1013-23	5.8	9
63	Arsenite and its mono- and dimethylated trivalent metabolites enhance the formation of benzo[a]pyrene diol epoxide-DNA adducts in Xeroderma pigmentosum complementation group A cells. <i>Chemical Research in Toxicology</i> , 2009 , 22, 382-90	4	9
62	Fluorescence Polarization: Recent Bioanalytical Applications, Pitfalls, and Future Trends. <i>Springer Series on Fluorescence</i> , 2008 , 303-322	0.5	9
61	Neurosensory effects of chronic exposure to arsenic via drinking water in Inner Mongolia: I. signs, symptoms and pinprick testing. <i>Journal of Water and Health</i> , 2006 , 4, 29-37	2.2	9
60	Factors influencing the removal of thymine glycol from DNA in gamma-irradiated human cells. <i>Progress in Molecular Biology and Translational Science</i> , 2001 , 68, 139-49		9

59	Pre-concentration by coprecipitation. Part 1. Rapid method for the determination of ultra-trace amounts of germanium in natural waters by hydride generation at the determination spectrometry. <i>Journal of Analytical Atomic Spectrometry</i> , 1991 , 6, 129-132	3.7	9
58	Determination of bismuth in river sediment by electrothermal atomic absorption spectrometry with low-temperature atomization in argon/hydrogen. <i>Analytica Chimica Acta</i> , 1986 , 186, 147-153	6.6	9
57	Aptamer Binding Assay for the E Antigen of Hepatitis B Using Modified Aptamers with G-Quadruplex Structures. <i>Analytical Chemistry</i> , 2020 , 92, 6495-6501	7.8	8
56	Metabolism of a Phenylarsenical in Human Hepatic Cells and Identification of a New Arsenic Metabolite. <i>Environmental Science & Environmental Science </i>	10.3	8
55	Detection of benzo(a)pyrene diol epoxide-DNA adducts in mononuclear white blood cells by CE immunoassay and its application to studying the effect of glutathione depletion. <i>Electrophoresis</i> , 2009 , 30, 1558-63	3.6	8
54	Quantitative determination of oxidized carbon nanotube probes in yeast by capillary electrophoresis with laser-induced fluorescence detection. <i>Analytica Chimica Acta</i> , 2006 , 580, 194-9	6.6	8
53	Binding-Mediated Formation of Ribonucleoprotein Corona for Efficient Delivery and Control of CRISPR/Cas9. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 11104-11109	16.4	8
52	Fluorescence imaging of Cu(I) in endoplasmic reticulum of live cells and tissue. <i>Science China Chemistry</i> , 2019 , 62, 887-888	7.9	7
51	Cyanobacterial bloom dynamics in Lake Taihu. <i>Journal of Environmental Sciences</i> , 2015 , 32, 249-51	6.4	7
50	Rapid growth of environmental research in China. <i>Journal of Environmental Sciences</i> , 2016 , 39, 1-3	6.4	7
49	Effects of co-administration of dietary sodium arsenate and 2,3-dimercaptopropane-1-sulfonic acid (DMPS) on the rat bladder epithelium. <i>Toxicology</i> , 2012 , 299, 155-9	4.4	7
48	Pharmacological induction of leukotriene B4-12-hydroxydehydrogenase suppresses the oncogenic transformation of human hepatoma HepG2 cells. <i>International Journal of Oncology</i> , 2011 , 39, 735-45	4.4	7
47	Determination of mercury in environmental and biological samples by cold vapour atomic absorption spectrometry. <i>Mikrochimica Acta</i> , 1993 , 111, 207-213	5.8	7
46	Multidrug Resistance Protein 1 (MRP1/)-Mediated Cellular Protection and Transport of Methylated Arsenic Metabolites Differs between Human Cell Lines. <i>Drug Metabolism and Disposition</i> , 2018 , 46, 1096	5 -1 105	7
45	Concomitant induction of heme oxygenase-1 attenuates the cytotoxicity of arsenic species from lumbricus extract in human liver HepG2 cells. <i>Chemistry and Biodiversity</i> , 2012 , 9, 739-54	2.5	6
44	Feasibility studies of the EXL setup for FAIR using the GSI storage ring ESR. <i>European Physical Journal: Special Topics</i> , 2007 , 150, 357-358	2.3	6
43	Determination of lead by graphite furnace atomic absorption spectrometry with argon-hydrogen as the purge gas using low-temperature atomisation. <i>Journal of Analytical Atomic Spectrometry</i> , 1986 , 1, 131	3.7	6
42	Visualization of fingerprints made easy with dye solution on cellulose membrane. <i>Science China Chemistry</i> , 2018 , 61, 375-376	7.9	5

41	Arsenic Speciation in Natural Waters. ACS Symposium Series, 2002, 11-32	0.4	5
40	Arsenic on the Hands of Children: Wang et al. Respond. <i>Environmental Health Perspectives</i> , 2005 , 113, A364-A365	8.4	5
39	-Hydroxyarylamine -Acetyltransferases Catalyze Acetylation of 3-Amino-4-Hydroxyphenylarsonic Acid in the 4-Hydroxy-3-Nitrobenzenearsonic Acid Transformation Pathway of sp. Strain CZ-1. <i>Applied and Environmental Microbiology</i> , 2020 , 86,	4.8	5
38	Effect of copper on the translocation and transformation of polychlorinated biphenyls in rice. <i>Chemosphere</i> , 2018 , 193, 514-520	8.4	5
37	Methylated Phenylarsenical Metabolites Discovered in Chicken Liver. <i>Angewandte Chemie</i> , 2017 , 129, 6877-6881	3.6	4
36	Keep swimming but stop peeing in the pools. <i>Journal of Environmental Sciences</i> , 2017 , 53, 322-325	6.4	4
35	Genotoxic effects of microcystins mediated by nitric oxide and mitochondria. <i>Journal of Environmental Sciences</i> , 2015 , 31, 206-8	6.4	4
34	Effects of an epidermal growth factor receptor inhibitor on arsenic associated toxicity in the rat bladder epithelium. <i>Toxicology Letters</i> , 2009 , 187, 124-9	4.4	4
33	Synthesis and characterization of DNA fluorescent probes containing a single site-specific stereoisomer of anti-benzo[a]pyrene diol epoxide-N2-dG. <i>Chemical Research in Toxicology</i> , 2009 , 22, 670	6-182	4
32	Immunofluorescence Detection of Radiation-Induced DNA Base Damage. <i>Military Medicine</i> , 2002 , 167, 2-4	1.3	4
31	Exposure to Arsenosugars from Seafood Ingestion and Speciation of Urinary Arsenic Metabolites 1999 , 69-79		4
30	Discovery and Identification of Arsenolipids Using a Precursor-Finder Strategy and Data-Independent Mass Spectrometry. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	4
29	Real-Time Cell-Electronic Sensing of Coal Fly Ash Particulate Matter for Toxicity-Based Air Quality Monitoring. <i>Chemical Research in Toxicology</i> , 2016 , 29, 972-80	4	4
28	Mapping Isoform Abundance and Interactome of the Endogenous TMPRSS2-ERG Fusion Protein by Orthogonal Immunoprecipitation-Mass Spectrometry Assays. <i>Molecular and Cellular Proteomics</i> , 2021 , 20, 100075	7.6	4
27	Die exponentielle isotherme Amplifikation von Nukleinsliren und Assays zur Detektion von Proteinen, Zellen, kleinen Moleklen und Enzymaktivitlen: Anwendungen fil EXPAR. <i>Angewandte Chemie</i> , 2018 , 130, 12030-12041	3.6	3
26	Arsenic biotransformation and an arsenite S-adenosylmethionine methyltransferase in plankton. <i>Journal of Environmental Sciences</i> , 2017 , 61, 118-121	6.4	3
25	Environmental analysis of single cells. Analytical and Bioanalytical Chemistry, 2007, 387, 45-9	4.4	3
24	Electronic microarray technique for detection of nine base substitutions including single-nucleotide polymorphisms in the human OGG1 gene. <i>Clinical Chemistry</i> , 2004 , 50, 1441-4	5.5	3

23	Trivalent arsenic species 2003 , 51-68		3
22	Study of the effects of bisphenol A using human fetal lung fibroblasts. <i>Journal of Environmental Sciences</i> , 2016 , 48, 6-10	6.4	3
21	Neurosensory effects of chronic exposure to arsenic via drinking water in Inner Mongolia: I. Signs, symptoms and pinprick testing. <i>Journal of Water and Health</i> , 2006 , 4, 29-37	2.2	3
20	Urine Sample Collection and Handling 2012 , 123-142		2
19	Titelbild: Methylated Phenylarsenical Metabolites Discovered in Chicken Liver (Angew. Chem. 24/2017). <i>Angewandte Chemie</i> , 2017 , 129, 6779-6779	3.6	1
18	p-Azidophenylarsenoxide: An Arsenical B aitl f or the In Situ Capture and Identification of Cellular Arsenic-Binding Proteins. <i>Angewandte Chemie</i> , 2016 , 128, 14257-14262	3.6	1
17	Beacon-mediated exponential amplification reaction (BEAR) using a single enzyme and primer. <i>Chemical Communications</i> , 2019 , 55, 10677-10680	5.8	1
16	Electrospray Mass Spectrometry of Arsenic Compounds and ThiolArsenic Complexes 2011,		1
15	Arsenic on the Hands of Children: Wang et al. Respond. <i>Environmental Health Perspectives</i> , 2005 , 113,	8.4	1
14	Assay for DNA damage using immunochemical recognition and capillary electrophoresis. <i>Methods in Molecular Biology</i> , 2001 , 162, 419-28	1.4	1
13	Split Locations and Secondary Structures of a DNAzyme Critical to Binding-Assembled Multicomponent Nucleic Acid Enzymes for Protein Detection. <i>Analytical Chemistry</i> , 2021 , 93, 15712-157	. 179 ⁸	1
12	Biliary excretion of arsenic by human HepaRG cells is stimulated by selenide and mediated by the multidrug resistance protein 2 (MRP2/ABCC2). <i>Biochemical Pharmacology</i> , 2021 , 193, 114799	6	1
11	Urinary speciation of sodium arsenate in folate receptor knockout mice 2003, 337-344		1
10	CRISPR Technique Incorporated with Single-Cell RNA Sequencing for Studying Hepatitis B Infection. <i>Analytical Chemistry</i> , 2021 , 93, 10756-10761	7.8	1
9	Enzyme Digestion for Speciation of Arsenic 2012 , 421-433		0
8	Probe and Control of Cellfell Interactions Using Bioengineered Tools 2014 , 349-370		
7	DNA Damage, Repair, and Genome Instability (Including Affinity Techniques) 2012, 231-260		
6	MesoporBe Materialien in der Peptidomanalyse. <i>Angewandte Chemie</i> , 2012 , 124, 3576-3577	3.6	

LIST OF PUBLICATIONS

- 5 Speciation studies of arsenic in the environment and in human. *Diqiu Huaxue*, **2006**, 25, 77-78
- 4 Carcinogenicity of dimethylarsinic acid (DMAV) **2003**, 321-335
- 3 Arsenic Compounds in Water7
- 2 Aptamers in Affinity Separations: Capillary Electrophoresis **2009**, 255-270
- Binding-Mediated Formation of Ribonucleoprotein Corona for Efficient Delivery and Control of CRISPR/Cas9. *Angewandte Chemie*, **2021**, 133, 11204-11209

3.6