
Konstantinos Balaskas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6075958/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Association of ambient air pollution with age-related macular degeneration and retinal thickness in UK Biobank. British Journal of Ophthalmology, 2022, 106, 705-711.	3.9	33
2	Outcomes following implementation of a high-volume medical retina virtual clinic utilising a diagnostic hub during COVID-19. Eye, 2022, 36, 627-633.	2.1	9
3	Teleophthalmology-enabled and artificial intelligence-ready referral pathway for community optometry referrals of retinal disease (HERMES): a Cluster Randomised Superiority Trial with a linked Diagnostic Accuracy Study—HERMES study report 1—study protocol. BMJ Open, 2022, 12, e055845.	1.9	8
4	Evaluating an automated machine learning model that predicts visual acuity outcomes in patients with neovascular age-related macular degeneration. Graefe's Archive for Clinical and Experimental Ophthalmology, 2022, , 1.	1.9	7
5	Enablers and Barriers to Deployment of Smartphone-Based Home Vision Monitoring in Clinical Practice Settings. JAMA Ophthalmology, 2022, 140, 153.	2.5	17
6	AlzEye: longitudinal record-level linkage of ophthalmic imaging and hospital admissions of 353 157 patients in London, UK. BMJ Open, 2022, 12, e058552.	1.9	22
7	Long-term Retinal Morphology and Functional Associations in Treated Neovascular Age-Related Macular Degeneration. Ophthalmology Retina, 2022, 6, 664-675.	2.4	4
8	A virtual-clinic pathway for patients referred from a national diabetes eye screening programme reduces service demands whilst maintaining quality of care. Eye, 2021, 35, 2260-2269.	2.1	10
9	Impact of injection frequency on 5-year real-world visual acuity outcomes of aflibercept therapy for neovascular age-related macular degeneration. Eye, 2021, 35, 409-417.	2.1	15
10	An open-source data set of anti-VEGF therapy in diabetic macular oedema patients over 4 years and their visual acuity outcomes. Eye, 2021, 35, 1354-1364.	2.1	4
11	Quantitative Analysis of OCT for Neovascular Age-Related Macular Degeneration Using Deep Learning. Ophthalmology, 2021, 128, 693-705.	5.2	64
12	Statistical Modelling of the Visual Impact of Subretinal Fluid and Associated Features. Ophthalmology and Therapy, 2021, 10, 127-135.	2.3	2
13	Predicting Incremental and Future Visual Change in Neovascular Age-Related Macular Degeneration Using Deep Learning. Ophthalmology Retina, 2021, 5, 1074-1084.	2.4	23
14	Insights From Survival Analyses During 12 Years of Anti–Vascular Endothelial Growth Factor Therapy for Neovascular Age-Related Macular Degeneration. JAMA Ophthalmology, 2021, 139, 57.	2.5	27
15	Unraveling the deep learning gearbox in optical coherence tomography image segmentation towards explainable artificial intelligence. Communications Biology, 2021, 4, 170.	4.4	20
16	Artificial Intelligence to Reduce Ocular Health Disparities: Moving From Concept to Implementation. Translational Vision Science and Technology, 2021, 10, 19.	2.2	23
17	Code-free deep learning for multi-modality medical image classification. Nature Machine Intelligence, 2021, 3, 288-298.	16.0	90
18	Smartphone-based remote monitoring of vision in macular disease enables early detection of worsening pathology and need for intravitreal therapy. BMJ Health and Care Informatics, 2021, 28, e100310.	3.0	15

#	Article	IF	CITATIONS
19	Predicting sex from retinal fundus photographs using automated deep learning. Scientific Reports, 2021, 11, 10286.	3.3	65
20	FENETRE study: quality-assured follow-up of quiescent neovascular age-related macular degeneration by non-medical practitioners: study protocol and statistical analysis plan for a randomised controlled trial. BMJ Open, 2021, 11, e049411.	1.9	4
21	Quantification of Key Retinal Features in Early and Late Age-Related Macular Degeneration Using Deep Learning. American Journal of Ophthalmology, 2021, 226, 1-12.	3.3	32
22	Deliberations of an International Panel of Experts on OCT Angiography Nomenclature of Neovascular Age-Related Macular Degeneration. Ophthalmology, 2021, 128, 1109-1112.	5.2	16
23	Agreement Between Spectral-Domain and Swept-Source Optical Coherence Tomography Retinal Thickness Measurements in Macular and Retinal Disease. Ophthalmology and Therapy, 2021, 10, 913-922.	2.3	6
24	Fundus Autofluorescence Imaging in Macular Telangiectasia Type 2: MacTel Study Report Number 9. American Journal of Ophthalmology, 2021, 228, 27-34.	3.3	9
25	Cloud-based genomics pipelines for ophthalmology: reviewed from research to clinical practice. Modeling and Artificial Intelligence in Ophthalmology, 2021, 3, 101-140.	0.0	1
26	Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning. JAMA Ophthalmology, 2021, 139, 964.	2.5	23
27	Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation study. The Lancet Digital Health, 2021, 3, e665-e675.	12.3	44
28	Machine Learning Algorithms to Detect Subclinical Keratoconus: Systematic Review. JMIR Medical Informatics, 2021, 9, e27363.	2.6	12
29	Uncovering of intraspecies macular heterogeneity in cynomolgus monkeys using hybrid machine learning optical coherence tomography image segmentation. Scientific Reports, 2021, 11, 20647.	3.3	4
30	Ultra-wide-field imaging assessment of small choroidal pigmented lesions using red and green colour channels. Eye, 2021, 35, 282-288.	2.1	5
31	Dynamic volumeâ€rendered optical coherence tomography pupillometry. Acta Ophthalmologica, 2021, , .	1.1	1
32	Anatomical and functional outcomes following switching from aflibercept to ranibizumab in neovascular age-related macular degeneration in Europe: SAFARI study. British Journal of Ophthalmology, 2020, 104, 493-499.	3.9	22
33	Novel biomarker of sphericity and cylindricity indices in volume-rendering optical coherence tomography angiography in normal and diabetic eyes: a preliminary study. Graefe's Archive for Clinical and Experimental Ophthalmology, 2020, 258, 711-723.	1.9	11
34	Comment on: Trends in Retina Specialist Imaging Utilization From 2012 to 2016 in the United States Medicare Fee-for-Service Population. American Journal of Ophthalmology, 2020, 211, 229.	3.3	8
35	Delivering personalized medicine in retinal care: from artificial intelligence algorithms to clinical application. Current Opinion in Ophthalmology, 2020, 31, 329-336.	2.9	20
36	Will AI Replace Ophthalmologists?. Translational Vision Science and Technology, 2020, 9, 2.	2.2	21

#	Article	IF	CITATIONS
37	Insights into Systemic Disease through Retinal Imaging-Based Oculomics. Translational Vision Science and Technology, 2020, 9, 6.	2.2	103
38	A Clinician's Guide to Artificial Intelligence: How to Critically Appraise Machine Learning Studies. Translational Vision Science and Technology, 2020, 9, 7.	2.2	109
39	Implementation of a cloud-based referral platform in ophthalmology: making telemedicine services a reality in eye care. British Journal of Ophthalmology, 2020, 104, 312-317.	3.9	65
40	Progression of Retinopathy Secondary to Maternally Inherited Diabetes and Deafness – Evaluation of Predicting Parameters. American Journal of Ophthalmology, 2020, 213, 134-144.	3.3	16
41	Moorfields AMD database report 2: fellow eye involvement with neovascular age-related macular degeneration. British Journal of Ophthalmology, 2020, 104, 684-690.	3.9	26
42	Health Economic and Safety Considerations for Artificial Intelligence Applications in Diabetic Retinopathy Screening. Translational Vision Science and Technology, 2020, 9, 22.	2.2	39
43	Structure–Function Analysis in Macular Drusen With Mesopic and Scotopic Microperimetry. Translational Vision Science and Technology, 2020, 9, 43.	2.2	6
44	Sweptâ€source optical coherence tomography angiography features of subâ€retinal fibrosis in neovascular ageâ€related macular degeneration. Clinical and Experimental Ophthalmology, 2019, 47, 233-239.	2.6	6
45	Validation of automated artificial intelligence segmentation of optical coherence tomography images. PLoS ONE, 2019, 14, e0220063.	2.5	48
46	Comparing diabetic retinopathy lesions in scanning laser ophthalmoscopy and colour fundus photography. Acta Ophthalmologica, 2019, 97, e1035-e1040.	1.1	7
47	Clinical Outcomes of a Hospital-Based Teleophthalmology Service. Ophthalmology Retina, 2019, 3, 422-428.	2.4	33
48	ECG Analysis and Heartbeat Classification Based on Shallow Neural Networks. , 2019, , .		15
49	Treatment decisions of UK hospital optometrists and ophthalmologists in patients with nAMD: a vignette study. Ophthalmic and Physiological Optics, 2019, 39, 432-440.	2.0	1
50	Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study. The Lancet Digital Health, 2019, 1, e232-e242.	12.3	183
51	A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. The Lancet Digital Health, 2019, 1, e271-e297.	12.3	930
52	One- and two-year visual outcomes from the Moorfields age-related macular degeneration database: a retrospective cohort study and an open science resource. BMJ Open, 2019, 9, e027441.	1.9	25
53	Impact of optical coherence tomography on diagnostic decisionâ€making by <scp>UK</scp> community optometrists: a clinical vignette study. Ophthalmic and Physiological Optics, 2019, 39, 205-215.	2.0	17
54	Psychological and Psychosocial Interventions for Depression and Anxiety in Patients With Age-Related Macular Degeneration: A Systematic Review. American Journal of Geriatric Psychiatry, 2019, 27, 755-773.	1.2	21

#	Article	IF	CITATIONS
55	Test performance of optical coherence tomography angiography in detecting retinal diseases: a systematic review and meta-analysis. Eye, 2019, 33, 1327-1338.	2.1	9
56	Effect of total anti-VEGF treatment exposure on patterns of choroidal neovascularisation assessed by optical coherence tomography angiography in age-related macular degeneration: a retrospective case series. BMJ Open Ophthalmology, 2019, 4, e000244.	1.6	6
57	Associations with photoreceptor thickness measures in the UK Biobank. Scientific Reports, 2019, 9, 19440.	3.3	15
58	Features of choroidal naevi on swept source optical coherence tomography angiography and structural reverse flow optical coherence tomography. Graefe's Archive for Clinical and Experimental Ophthalmology, 2018, 256, 1319-1323.	1.9	10
59	Reply. American Journal of Ophthalmology, 2018, 187, 167-168.	3.3	0
60	Implementation of medical retina virtual clinics in a tertiary eye care referral centre. British Journal of Ophthalmology, 2018, 102, 1391-1395.	3.9	53
61	Use of a Neural Net to Model the Impact of Optical Coherence Tomography Abnormalities on Vision in Age-related Macular Degeneration. American Journal of Ophthalmology, 2018, 185, 94-100.	3.3	35
62	Initiation and maintenance of a Treat-and-Extend regimen for ranibizumab therapy in wet age-related macular degeneration: recommendations from the UK Retinal Outcomes Group. Clinical Ophthalmology, 2018, Volume 12, 1731-1740.	1.8	19
63	Interdevice variability of central corneal thickness measurement. PLoS ONE, 2018, 13, e0203884.	2.5	13
64	Safety and Feasibility of a Novel Sparse Optical Coherence Tomography Device for Patient-Delivered Retina Home Monitoring. Translational Vision Science and Technology, 2018, 7, 8.	2.2	44
65	High-Performance Virtual Reality Volume Rendering of Original Optical Coherence Tomography Point-Cloud Data Enhanced With Real-Time Ray Casting. Translational Vision Science and Technology, 2018, 7, 2.	2.2	28
66	Feasibility Study of Subfoveal Choroidal Thickness Changes in Spectral-Domain Optical Coherence Tomography Measurements of Macular Telangiectasia Type 2. Lecture Notes in Computer Science, 2018, , 303-309.	1.3	0
67	QUANTITATIVE ANALYSIS OF PIGMENT EPITHELIAL DETACHMENT RESPONSE TO DIFFERENT ANTI–VASCULAR ENDOTHELIAL GROWTH FACTOR AGENTS IN WET AGE-RELATED MACULAR DEGENERATION. Retina, 2017, 37, 1297-1304.	1.7	19
68	Experience of Anti-VEGF Treatment and Clinical Levels of Depression and Anxiety in Patients With Wet Age-Related Macular Degeneration. American Journal of Ophthalmology, 2017, 177, 213-224.	3.3	69
69	Swept-Source Optical Coherence Tomography Angiography Findings in Torpedo Maculopathy. Ophthalmic Surgery Lasers and Imaging Retina, 2017, 48, 932-935.	0.7	9
70	A cross-sectional study of submacular thickening in intermediate uveitis and determination of treatment threshold. BMC Ophthalmology, 2016, 16, 59.	1.4	5
71	The Novel Evidenced Assessment of Tortuosity system: interobserver reliability and agreement with clinical assessment. Acta Ophthalmologica, 2016, 94, e421-6.	1.1	3
72	Management of choroidal naevomelanocytic lesions: feasibility and safety of a virtual clinic model. British Journal of Ophthalmology, 2016, 100, 665-670.	3.9	16

#	Article	IF	CITATIONS
73	Patient Perceptions and Experiences of Stereotactic Radiotherapy for Wet Age-Related Macular Degeneration. European Journal of Ophthalmology, 2016, 26, e80-e82.	1.3	2
74	Psychological impact of anti-VEGF treatments for wet macular degeneration—a review. Graefe's Archive for Clinical and Experimental Ophthalmology, 2016, 254, 1873-1880.	1.9	54
75	Automated Analysis of Vitreous Inflammation Using Spectral-Domain Optical Coherence Tomography. Translational Vision Science and Technology, 2015, 4, 4.	2.2	36
76	ASSOCIATIONS BETWEEN AUTOFLUORESCENCE ABNORMALITIES AND VISUAL ACUITY IN IDIOPATHIC MACULAR TELANGIECTASIA TYPE 2. Retina, 2014, 34, 1630-1636.	1.7	10
77	Comparison of mathematical morphological descriptors of hyporeflective cavities in optical coherence tomography of patients with macular telangiectasia compared to patients with diabetic maculopathy. Acta Ophthalmologica, 2014, 92, e580-1.	1.1	1
78	Repeatability of visual function measures in age-related macular degeneration. Graefe's Archive for Clinical and Experimental Ophthalmology, 2014, 252, 201-206.	1.9	13
79	A new drug delivery system inhibits uveitis in an animal model after cataract surgery. International Journal of Pharmaceutics, 2013, 443, 254-261.	5.2	17
80	Peripapillary choroidal neovascularisation in the context of ocular syphilis is sensitive to combination antibiotic and corticosteroid treatment. International Ophthalmology, 2013, 33, 159-162.	1.4	10
81	Differences in spectral absorption properties between active neovascular macular degeneration and mild age related maculopathy. British Journal of Ophthalmology, 2013, 97, 558-560.	3.9	4
82	Retinal Thickening in HLA-B27–Associated Acute Anterior Uveitis: Evolution with Time and Association with Severity of Inflammatory Activity. , 2012, 53, 6171.		29
83	Long-term ranibizumab treatment for choroidal neovascularization secondary to serpiginous choroiditis. Canadian Journal of Ophthalmology, 2012, 47, e15-e17.	0.7	6
84	Infliximab Therapy for a Severe Case of IgG4-related Ocular Adnexal Disorder Recalcitrant to Corticosteroid Treatment. Ocular Immunology and Inflammation, 2012, 20, 478-480.	1.8	14
85	Fluorescein and indocyanine-green angiography in ocular syphilis: an exploratory study. Graefe's Archive for Clinical and Experimental Ophthalmology, 2012, 250, 721-730.	1.9	14
86	Azithromycin versus Sulfadiazine and Pyrimethamine for non-vision-threatening toxoplasmic retinochoroiditis: A pilot study. Medical Science Monitor, 2012, 18, CR296-CR302.	1.1	32
87	Analysis of significant factors influencing visual acuity in ocular syphilis. British Journal of Ophthalmology, 2011, 95, 1568-1572.	3.9	33