Yuzhang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6075937/publications.pdf Version: 2024-02-01

YUZHANG WANG

#	Article	IF	CITATIONS
1	Coupling effect of key parameters of heat recovery components on the HAT cycle performance. Energy, 2022, 238, 122051.	4.5	2
2	Research on the effectiveness of the key components in the HAT cycle. Applied Energy, 2022, 306, 118066.	5.1	8
3	Evaluation of Internal Cracks in Turbine Blade Thermal Barrier Coating Using Enhanced Multi-Scale Faster R-CNN Model. Applied Sciences (Switzerland), 2022, 12, 6446.	1.3	3
4	Influence of crack features on heat transfer characteristic and cracking behaviour of APS-YSZ coating: A numerical simulation study. Ceramics International, 2021, 47, 22209-22218.	2.3	10
5	Effect of partial blockage on flow and heat transfer of film cooling with cylindrical and fan-shaped holes. International Journal of Thermal Sciences, 2021, 164, 106866.	2.6	13
6	Online nondestructive evaluation of TBC crack using infrared thermography. Measurement Science and Technology, 2021, 32, 115008.	1.4	4
7	3D numerical reconstruction and microstructure regulation of thermal barrier coatings for high temperature components of gas turbine. Ceramics International, 2021, 47, 20126-20140.	2.3	3
8	Conjugate flow and heat transfer analysis between segmented thermal barrier coatings and cooling film. International Journal of Thermal Sciences, 2021, 167, 107003.	2.6	6
9	Effect of particle deposition on film cooling from fan-shaped holes. International Journal of Heat and Mass Transfer, 2021, 181, 122028.	2.5	10
10	Large eddy simulation of film cooling from cylindrical holes partially blocked by CaO-MgO-Al2O3-SiO2. International Communications in Heat and Mass Transfer, 2021, 129, 105754.	2.9	9
11	Effect of carbon dioxide content in biogas on turbulent combustion in the combustor of micro gas turbine. Renewable Energy, 2020, 147, 1299-1311.	4.3	19
12	Analysis of air humidification process for humid air turbine cycle with a detailed air humidifier model. Applied Energy, 2020, 279, 115833.	5.1	3
13	Experimental analysis of the air humidification process for humid air turbine cycle using a two-phase measurement system. Applied Energy, 2020, 279, 115892.	5.1	2
14	A coupling diagnosis method of sensors faults in gas turbine control system. Energy, 2020, 205, 117999.	4.5	33
15	On-line detection of porosity change of high temperature blade coating for gas turbine. Infrared Physics and Technology, 2020, 110, 103415.	1.3	8
16	A Conjugate Heat Transfer and Thermal Stress Analysis of Film-Cooled Superalloy With Thermal Barrier Coating. , 2020, , .		4
17	Research on the Heat Insulation Performance of Advanced Thermal Barrier Coatings Based on Dense Vertical Cracked Structure. , 2019, , .		4
18	Study of flow and combustion characteristics of optimized low swirl premixed nozzle for micro gas turbine. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 2154-2162.	1.2	4

YUZHANG WANG

#	Article	IF	CITATIONS
19	Experimental study of flow characteristics of enhanced biogas lean premixed nozzle of micro gas turbine by PIV. Applied Thermal Engineering, 2017, 121, 90-102.	3.0	11
20	Study on thermal resistance performance of 8YSZ thermal barrier coatings. International Journal of Thermal Sciences, 2017, 122, 12-25.	2.6	18
21	Effects of pore microstructure on the effective thermal conductivity of thermal barrier coatings. Applied Thermal Engineering, 2016, 102, 234-242.	3.0	37
22	Analysis of Conjugate Heat Transfer Between Cooling Film and Thermal Barrier Coatings Based on Micro-Structure. , 2016, , .		2
23	Effect of operating parameters on a hybrid system of intermediate-temperature solid oxide fuel cell and gas turbine. Energy, 2015, 91, 10-19.	4.5	30
24	Analysis of Effective Thermal Conductivity of Thermal Barrier Coatings Based on Microstructure. , 2014, , .		0
25	Numerical analysis of optimal performance of planar electrode supported solid oxide fuel cell at various syngas flow rates. Energy Conversion and Management, 2014, 77, 637-642.	4.4	8
26	Experimental investigation of pressurized packing saturator for humid air turbine cycle. Applied Thermal Engineering, 2014, 62, 513-519.	3.0	11
27	Analysis on Integrated Gasification Humid Air Turbine System With Air Blown Gasifier. , 2014, , .		1
28	Numerical Analysis of the Possibility of Carbon Formation in Planar SOFC Fueled With Syngas. Journal of Fuel Cell Science and Technology, 2012, 9, .	0.8	8
29	Performance of planar electrode-supported high-temperature solid oxide fuel cell using syngas. Journal of Solid State Electrochemistry, 2012, 16, 1509-1517.	1.2	2
30	Numerical investigation of the chemical and electrochemical characteristics of planar solid oxide fuel cell with direct internal reforming. Frontiers in Energy, 2011, 5, 195-206.	1.2	3
31	Numerical investigation of different loads effect on the performance of planar electrode supported SOFC with syngas as fuel. International Journal of Hydrogen Energy, 2011, 36, 5624-5631.	3.8	11
32	Development and investigation on the study state of solid oxide fuel cell and hybrid power system. , 2009, , .		1
33	Performance and effective kinetic models of methane steam reforming over Ni/YSZ anode of planar SOFC. International Journal of Hydrogen Energy, 2009, 34, 3885-3893.	3.8	99
34	The Effect of Anode Porosity on the Performance of Planar Electrode Supported Solid Oxide Fuel Cell. , 2009, , .		5
35	Thermodynamic performance experiment and cooling number calculation of a counter-flow spray humidifier in the HAT cycle. Frontiers of Energy and Power Engineering in China, 2008, 2, 43-47.	0.4	0
36	Development of a new temperature measuring system for gas–liquid flow in spraying field. Experimental Thermal and Fluid Science, 2007, 31, 917-924.	1.5	7

YUZHANG WANG

#	Article	IF	CITATIONS
37	Experimental investigation on humidifying performance of counter flow spray saturator for humid air turbine cycle. Energy Conversion and Management, 2007, 48, 756-763.	4.4	17
38	Numerical simulation of counter-flow spray saturator for humid air turbine cycle. Energy, 2007, 32, 852-860.	4.5	18
39	Numerical analysis of electrochemical characteristics and heat/species transport for planar porous-electrode-supported SOFC. Journal of Power Sources, 2007, 170, 101-110.	4.0	56
40	Experimental investigation on inner two-phase flow in counter-flow spray saturator for HAT cycle. Applied Thermal Engineering, 2006, 26, 2417-2424.	3.0	12