Unai Iriarte-Velasco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/607564/publications.pdf

Version: 2024-02-01

623734 552781 31 691 14 26 citations g-index h-index papers 31 31 31 860 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Production of magnetic sewage sludge biochar: investigation of the activation mechanism and effect of the activating agent and temperature. Biomass Conversion and Biorefinery, 2023, 13, 17101-17118.	4.6	6
2	Aqueous-phase reforming of glycerol over Pt-Co catalyst: Effect of process variables. Journal of Environmental Chemical Engineering, 2022, 10, 107402.	6.7	9
3	Ce-doped cobalt aluminate catalysts for the glycerol hydrodeoxygenation (HDO) with in-situ produced hydrogen. Journal of Environmental Chemical Engineering, 2022, 10, 107612.	6.7	2
4	Aqueous-Phase Glycerol Conversion over Ni-Based Catalysts Synthesized by Nanocasting. Catalysts, 2022, 12, 668.	3.5	2
5	Highly stable Pt/CoAl2O4 catalysts in Aqueous-Phase Reforming of glycerol. Catalysis Today, 2021, 367, 278-289.	4.4	36
6	Biogenic hydroxyapatite as novel catalytic support for Ni and Cu for the water–gas shift reaction. Journal of Materials Science, 2021, 56, 6745-6763.	3.7	6
7	Biohydrogen production by glycerol Aqueous-Phase Reforming: Effect of promoters (Ce or Mg) in the NiAl2O4 spinel-derived catalysts. Journal of Environmental Chemical Engineering, 2021, 9, 106433.	6.7	7
8	Bimetallic Pt-Co Catalysts for the Liquid-Phase WGS. Catalysts, 2020, 10, 830.	3.5	5
9	Nickel aluminate spinel-derived catalysts for the aqueous phase reforming of glycerol: Effect of reduction temperature. Applied Catalysis B: Environmental, 2019, 244, 931-945.	20.2	103
10	Transition metals supported on bone-derived hydroxyapatite as potential catalysts for the Water-Gas Shift reaction. Renewable Energy, 2018, 115, 641-648.	8.9	36
11	Cobalt aluminate spinel-derived catalysts for glycerol aqueous phase reforming. Applied Catalysis B: Environmental, 2018, 239, 86-101.	20.2	69
12	Investigation of the calcination temperature effect on the interaction between Au nanoparticles and the catalytic support \hat{l} ±-Fe 2 O 3 for the low temperature CO oxidation. Journal of the Taiwan Institute of Chemical Engineers, 2017, 75, 18-28.	5.3	10
13	Upgrading of sewage sludge by demineralization and physical activation with CO 2 : Application for methylene blue and phenol removal. Microporous and Mesoporous Materials, 2017, 250, 88-99.	4.4	21
14	Preparation of a porous biochar from the acid activation of pork bones. Food and Bioproducts Processing, 2016, 98, 341-353.	3.6	70
15	Selective hydrogenation of sunflower oil over Ni catalysts. Korean Journal of Chemical Engineering, 2016, 33, 80-89.	2.7	8
16	Preparation of carbon-based adsorbents from the pyrolysis of sewage sludge with CO ₂ . Investigation of the acid washing procedure. Desalination and Water Treatment, 2016, 57, 16053-16065.	1.0	12
17	Hydrogenation of Sunflower Oil over M/SiO ₂ and M/Al ₂ O ₃ (M =) Tj ETQq1	1.0.7843	14 rgBT /0v
18	Methylene blue adsorption by chemically activated waste pork bones. Coloration Technology, 2015, 131, 322-332.	1.5	14

#	Article	IF	CITATIONS
19	Conversion of waste animal bones into porous hydroxyapatite by alkaline treatment: effect of the impregnation ratio and investigation of the activation mechanism. Journal of Materials Science, 2015, 50, 7568-7582.	3.7	25
20	Microcolumn adsorption studies of acid/basic dyes related to the physicochemical properties of the adsorbent. Coloration Technology, 2014, 130, 62-72.	1.5	4
21	An insight into the reactions occurring during the chemical activation of bone char. Chemical Engineering Journal, 2014, 251, 217-227.	12.7	30
22	Application of Principal Component Analysis to the Adsorption of Natural Organic Matter by Modified Activated Carbons. Separation Science and Technology, 2011, 46, 2239-2249.	2.5	4
23	Relationship between Thermodynamic Data and Adsorption/Desorption Performance of Acid and Basic Dyes onto Activated Carbons. Journal of Chemical & Engineering Data, 2011, 56, 2100-2109.	1.9	31
24	The effect of mixed oxidants and powdered activated carbon on the removal of natural organic matter. Journal of Hazardous Materials, 2010, 181, 426-431.	12.4	31
25	Evaluation of the Adsorption of Aquatic Humic Substances in Batch and Column Experiments by Thermally Modified Activated Carbons. Industrial & Engineering Chemistry Research, 2009, 48, 5445-5453.	3.7	8
26	Natural Organic Matter Adsorption onto Granular Activated Carbons: Implications in the Molecular Weight and Disinfection Byproducts Formation. Industrial & Engineering Chemistry Research, 2008, 47, 7868-7876.	3.7	35
27	Enhanced coagulation under changing alkalinity-hardness conditions and its implications on trihalomethane precursors removal and relationship with UV absorbance. Separation and Purification Technology, 2007, 55, 368-380.	7.9	44
28	Removal and structural changes in natural organic matter in a Spanish water treatment plant using nascent chlorine. Separation and Purification Technology, 2007, 57, 152-160.	7.9	19
29	Monitoring trihalomethanes in water by differential ultraviolet spectroscopy. Environmental Chemistry Letters, 2006, 4, 243-247.	16.2	4
30	Kinetics of Chloroform Formation from Humic and Fulvic Acid Chlorination. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2006, 41, 1495-1508.	1.7	10
31	Trihalomethane formation in ozonated and chlorinated surface water. Environmental Chemistry Letters, 2003, 1, 57-61.	16.2	11