
Sophie Domingues-Montanari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/607556/publications.pdf Version: 2024-02-01

SOPHIE

#	Article	IF	CITATIONS
1	Clinical and psychological effects of excessive screen time on children. Journal of Paediatrics and Child Health, 2017, 53, 333-338.	0.8	241
2	A large screening of angiogenesis biomarkers and their association with neurological outcome after ischemic stroke. Atherosclerosis, 2011, 216, 205-211.	0.8	103
3	<i>TTC7B</i> Emerges as a Novel Risk Factor for Ischemic Stroke Through the Convergence of Several Genome-Wide Approaches. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1061-1072.	4.3	86
4	MMPâ€2/MMPâ€9 Plasma Level and Brain Expression in Cerebral Amyloid Angiopathyâ€Associated Hemorrhagic Stroke. Brain Pathology, 2012, 22, 133-141.	4.1	73
5	Brain Perihematoma Genomic Profile Following Spontaneous Human Intracerebral Hemorrhage. PLoS ONE, 2011, 6, e16750.	2.5	60
6	Association of a Genetic Variant in the <i>ALOX5AP</i> with Higher Risk of Ischemic Stroke: A Case-Control, Meta-Analysis and Functional Study. Cerebrovascular Diseases, 2010, 29, 528-537.	1.7	54
7	Genetics of stroke: a review of recent advances. Expert Review of Molecular Diagnostics, 2008, 8, 495-513.	3.1	49
8	A predictive clinical–genetic model of tissue plasminogen activator response in acute ischemic stroke. Annals of Neurology, 2012, 72, 716-729.	5.3	39
9	Association between ESR2 Genetic Variants and Risk of Myocardial Infarction. Clinical Chemistry, 2008, 54, 1183-1189.	3.2	36
10	<i>IL1B</i> and <i>VWF</i> Variants Are Associated With Fibrinolytic Early Recanalization in Patients With Ischemic Stroke. Stroke, 2012, 43, 2659-2665.	2.0	28
11	GRECOS Project (Genotyping Recurrence Risk of Stroke). Stroke, 2017, 48, 1147-1153.	2.0	23
12	KCNK17 genetic variants in ischemic stroke. Atherosclerosis, 2010, 208, 203-209.	0.8	22
13	CADASIL management or what to do when there is little one can do. Expert Review of Neurotherapeutics, 2009, 9, 197-210.	2.8	20
14	Genes involved in hemorrhagic transformations that follow recombinant t-PA treatment in stroke patients. Pharmacogenomics, 2013, 14, 495-504.	1.3	18
15	<i>CD40</i> -1C>T polymorphism (rs1883832) is associated with brain vessel reocclusion after fibrinolysis in ischemic stroke. Pharmacogenomics, 2010, 11, 763-772.	1.3	16
16	Role of the MMP9 Gene in Hemorrhagic Transformations After Tissue-Type Plasminogen Activator Treatment in Stroke Patients. Stroke, 2012, 43, 1398-1400.	2.0	13
17	Telemedicine is helping the parents of children with neurodevelopmental disorders living in remote and deprived areas. Paediatrics and International Child Health, 2017, 37, 155-157.	1.0	12