Guofeng Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6075558/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Elevated stability of nickel-rich oxide cathode material with concentration gradient of transition metals via a novel size-controllable calcination method. Journal of Alloys and Compounds, 2022, 893, 162252.	5.5	3
2	Origin of high electrochemical stability of multi-metal chloride solid electrolytes for high energy all-solid-state lithium-ion batteries. Nano Energy, 2022, 92, 106674.	16.0	36
3	Superionic Fluorinated Halide Solid Electrolytes for Highly Stable Liâ€Metal in Allâ€Solidâ€State Li Batteries. Advanced Energy Materials, 2021, 11, 2101915.	19.5	61
4	Progress and perspectives on typical inorganic solid-state electrolytes. Journal of Alloys and Compounds, 2021, 885, 161013.	5.5	42
5	Improved cycle performance of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 by Ga doping for lithium ion battery cathode material. Solid State Ionics, 2017, 301, 64-71.	2.7	30
6	Stabilizing the Oxygen Ions and Alleviating the Surface Structure Evolution of Li-Excess Layered Cathode for Advanced Lithium-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A2441-A2447.	2.9	6
7	Surface Heterostructure Induced by PrPO ₄ Modification in Li _{1.2} [Mn _{0.54} Ni _{0.13} Co _{0.13}]O ₂ Cathode Material for High-Performance Lithium-Ion Batteries with Mitigating Voltage Decay. ACS Applied Materials & amp: Interfaces. 2017. 9. 27936-27945.	8.0	81
8	The formation and electrochemical property of lithium-excess cathode material Li1.2Ni0.13Co0.13Mn0.54O2 with petal-like nanoplate microstructure. lonics, 2017, 23, 2285-2291.	2.4	2
9	Understanding the Charge Storage Mechanism and Electrochemical Performance on the Poly[Ni(salen)]-modified Electrode Electropolymerized with Different Sweep Rate. Electrochemistry, 2017, 85, 461-468.	1.4	4
10	Effects of Potential Modes on Performances of Electrodeposited Poly[Ni(salen)]/MWCNTs Composite as Supercapacitor Electrode Material. Electrochemistry, 2016, 84, 427-431.	1.4	8
11	Stabilizing the structure and suppressing the voltage decay of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 cathode materials for Li-ion batteries via multifunctional PrAoxide surface modification. Ceramics International, 2016, 42, 18620-18630.	4.8	24
12	Understanding the enhanced electrochemical performance of samarium substituted Li[Li0.2Mn0.54â^'xSmxCo0.13Ni0.13]O2 cathode material for lithium ion batteries. Solid State Ionics, 2016, 293, 7-12.	2.7	25
13	Understanding the electrochemical superiority of 0.6Li[Li 1/3 Mn 2/3]O 2 -0.4Li[Ni 1/3 Co 1/3 Mn 1/3]O 2 nanofibers as cathode material for lithium ion batteries. Electrochimica Acta, 2015, 173, 672-679.	5.2	18
14	Characterization of cathode from LiNi _x Mn _{2â^x} O ₄ nanofibers by electrospinning for Li-ion batteries. RSC Advances, 2015, 5, 108007-108014.	3.6	10
15	Preparation of the cactus-like porous manganese oxide assisted with surfactant sodium dodecyl sulfate for supercapacitors. Journal of Alloys and Compounds, 2015, 621, 86-92.	5.5	26
16	Enhanced oxygen reducibility of 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 cathode material with mild acid treatment. Journal of Power Sources, 2014, 248, 894-899.	7.8	44
17	Fabrication and electrochemical characteristics of electrospun LiMn2O4 nanofiber cathode for Li-ion batteries. Materials Letters, 2014, 117, 175-178.	2.6	21
18	In situ polyaniline modified cathode material Li[Li _{0.2} Mn _{0.54} Ni _{0.13} Co _{0.13}]O ₂ with high rate capacity for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 18613-18623.	10.3	79

GUOFENG XU

#	Article	IF	CITATIONS
19	Elevated electrochemical performance of (NH4)3AlF6-coated 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 cathode material via a novel wet coating method. Electrochimica Acta, 2014, 117, 41-47.	5.2	22
20	Microwave-hydrothermal preparation of a graphene/hierarchy structure MnO2 composite for a supercapacitor. Particuology, 2014, 15, 27-33.	3.6	18
21	High capacity 0.5Li2MnO3·0.5LiNi0.33Co0.33Mn0.33O2 cathode material via a fast co-precipitation method. Electrochimica Acta, 2013, 87, 686-692.	5.2	56