Kerstin Wolk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6075379/publications.pdf Version: 2024-02-01

KEDSTIN MOLK

#	Article	IF	CITATIONS
1	Early prediction of renal graft function: Analysis of a multi-center, multi-level data set. Current Research in Translational Medicine, 2022, 70, 103334.	1.2	2
2	A Systematic Review of Promising Therapeutic Targets in Hidradenitis Suppurativa: A Critical Evaluation of Mechanistic and Clinical Relevance. Journal of Investigative Dermatology, 2021, 141, 316-324.e2.	0.3	44
3	Activity and components of the granulocyte colonyâ€ s timulating factor pathway in hidradenitis suppurativa*. British Journal of Dermatology, 2021, 185, 164-176.	1.4	43
4	Reprogramming Intestinal Epithelial Cell Polarity by Interleukin-22. Frontiers in Medicine, 2021, 8, 656047.	1.2	6
5	Features Associated With Quality of Life Impairment in Hidradenitis Suppurativa Patients. Frontiers in Medicine, 2021, 8, 676241.	1.2	34
6	Target molecules for future hidradenitis suppurativa treatment. Experimental Dermatology, 2021, 30, 8-17.	1.4	34
7	Risk factors for Epstein–Barr virus reactivation after renal transplantation: Results of a large, multiâ€centre study. Transplant International, 2021, 34, 1680-1688.	0.8	5
8	Integrated microRNA/mRNA expression profiling of the skin of psoriasis patients. Journal of Dermatological Science, 2020, 97, 9-20.	1.0	24
9	Increased presence and differential molecular imprinting of transit amplifying cells in psoriasis. Journal of Molecular Medicine, 2020, 98, 111-122.	1.7	6
10	Serine Protease-Mediated Cutaneous Inflammation: Characterization of an Ex Vivo Skin Model for the Assessment of Dexamethasone-Loaded Core Multishell-Nanocarriers. Pharmaceutics, 2020, 12, 862.	2.0	7
11	Aetiology and pathogenesis of hidradenitis suppurativa. British Journal of Dermatology, 2020, 183, 999-1010.	1.4	93
12	The herbal extract EPs® 7630 increases the antimicrobial airway defense through monocyte-dependent induction of IL-22 in T cells. Journal of Molecular Medicine, 2020, 98, 1493-1503.	1.7	15
13	SLAMF7 and IL-6R define distinct cytotoxic versus helper memory CD8+ T cells. Nature Communications, 2020, 11, 6357.	5.8	38
14	Hidradenitis suppurativa. Nature Reviews Disease Primers, 2020, 6, 18.	18.1	286
15	Analysis of the Status of the Cutaneous Endogenous and Exogenous Antioxidative System of Smokers and the Short-Term Effect of Defined Smoking Thereon. Antioxidants, 2020, 9, 537.	2.2	7
16	Delayed Diagnosis of Hidradenitis Suppurativa and Its Effect on Patients and Healthcare System. Dermatology, 2020, 236, 421-430.	0.9	79
17	Efficacy of Adalimumab for Nail Psoriasis During 24 Months of Continuous Therapy. Acta Dermato-Venereologica, 2020, 100, adv00214.	0.6	8
18	Sex-Associated Differences in Cytomegalovirus Prevention: Prophylactic Strategy is Potentially Associated With a Strong Kidney Function Impairment in Female Renal Transplant Patients. Frontiers in Pharmacology, 2020, 11, 534681.	1.6	3

#	Article	IF	CITATIONS
19	A novel approach reveals that HLA class 1 single antigen bead-signatures provide a means of high-accuracy pre-transplant risk assessment of acute cellular rejection in renal transplantation. BMC Immunology, 2019, 20, 11.	0.9	14
20	T cell pathology in skin inflammation. Seminars in Immunopathology, 2019, 41, 359-377.	2.8	120
21	The IL-1 Pathway Is Hyperactive in Hidradenitis Suppurativa and Contributes to Skin Infiltration and Destruction. Journal of Investigative Dermatology, 2019, 139, 1294-1305.	0.3	153
22	Association of CCL2 with systemic inflammation in Schnitzler syndrome. British Journal of Dermatology, 2019, 180, 859-868.	1.4	18
23	Increased levels of lipocalin 2 in palmoplantar pustular psoriasis. Journal of Dermatological Science, 2018, 90, 68-74.	1.0	27
24	Absence of specific alternatively spliced exon of CD44 in macrophages prevents colitis. Mucosal Immunology, 2018, 11, 846-860.	2.7	9
25	BKV, CMV, and EBV Interactions and their Effect on Graft Function One Year Post-Renal Transplantation: Results from a Large Multi-Centre Study. EBioMedicine, 2018, 34, 113-121.	2.7	66
26	Lipocalinâ€2 is expressed by activated granulocytes and keratinocytes in affected skin and reflects disease activity in acne inversa/hidradenitis suppurativa. British Journal of Dermatology, 2017, 177, 1385-1393.	1.4	73
27	Limited Presence of IL-22 Binding Protein, a Natural IL-22 Inhibitor, Strengthens Psoriatic Skin Inflammation. Journal of Immunology, 2017, 198, 3671-3678.	0.4	58
28	MMP8 Is Increased in Lesions and Blood of Acne Inversa Patients: A Potential Link to Skin Destruction and Metabolic Alterations. Mediators of Inflammation, 2016, 2016, 1-8.	1.4	36
29	Adipokines in psoriasis: An important link between skin inflammation and metabolic alterations. Reviews in Endocrine and Metabolic Disorders, 2016, 17, 305-317.	2.6	73
30	Interleukin-29 induces epithelial production of CXCR3A ligands and T-cell infiltration. Journal of Molecular Medicine, 2016, 94, 391-400.	1.7	29
31	Deciphering the role of interleukin-22 in metabolic alterations. Cell and Bioscience, 2015, 5, 68.	2.1	28
32	The Pelargonium sidoides Extract EPs 7630 Drives the Innate Immune Defense by Activating Selected MAP Kinase Pathways in Human Monocytes. PLoS ONE, 2015, 10, e0138075.	1.1	26
33	Ultra-small lipid nanoparticles promote the penetration of coenzyme Q10 in skin cells and counteract oxidative stress. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 89, 201-207.	2.0	60
34	Interleukin-10 receptor-1 expression in monocyte-derived antigen-presenting cell populations: dendritic cells partially escape from IL-10's inhibitory mechanisms. Genes and Immunity, 2015, 16, 8-14.	2.2	13
35	Deficient Cutaneous Antibacterial Competence in Cutaneous T-Cell Lymphomas: Role of Th2-Mediated Biased Th17 Function. Clinical Cancer Research, 2014, 20, 5507-5516.	3.2	56
36	Therapeutic opportunities of the IL-22–IL-22R1 system. Nature Reviews Drug Discovery, 2014, 13, 21-38.	21.5	464

#	Article	IF	CITATIONS
37	IL-19 Is a Component of the Pathogenetic IL-23/IL-17 Cascade in Psoriasis. Journal of Investigative Dermatology, 2014, 134, 2757-2767.	0.3	121
38	IL-29 Is Produced by T _H 17 Cells and Mediates the Cutaneous Antiviral Competence in Psoriasis. Science Translational Medicine, 2013, 5, 204ra129.	5.8	110
39	Tumor Necrosis Factor Receptor Signaling in Keratinocytes Triggers Interleukin-24-Dependent Psoriasis-like Skin Inflammation in Mice. Immunity, 2013, 39, 899-911.	6.6	134
40	CD44 variant isoforms control experimental autoimmune encephalomyelitis by affecting the lifespan of the pathogenic T cells. FASEB Journal, 2013, 27, 3683-3701.	0.2	14
41	IL-22 and IL-17: An Overview. , 2013, , 11-35.		10
42	Role of IL-23, IL-17, and IL-22 in Psoriasis. , 2013, , 287-304.		1
43	Increased Prevalence of Metabolic Syndrome in Patients with Acne Inversa. PLoS ONE, 2012, 7, e31810.	1.1	197
44	Research in practice: ILâ€22 and ILâ€20: significance for epithelial homeostasis and psoriasis pathogenesis. JDDG - Journal of the German Society of Dermatology, 2011, 9, 518-523.	0.4	34
45	Forschen für die Praxis: Interleukin-22 und Interleukin-20: Bedeutung für epitheliale Homöostase und Psoriasispathogenese. JDDG - Journal of the German Society of Dermatology, 2011, 9, 518-524.	0.4	21
46	Dual Role of IL-22 in Allergic Airway Inflammation and its Cross-talk with IL-17A. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1153-1163.	2.5	187
47	Deficiency of IL-22 Contributes to a Chronic Inflammatory Disease: Pathogenetic Mechanisms in Acne Inversa. Journal of Immunology, 2011, 186, 1228-1239.	0.4	230
48	Biology of interleukin-22. Seminars in Immunopathology, 2010, 32, 17-31.	2.8	356
49	Interleukin-28 and Interleukin-29: Novel Regulators of Skin Biology. Journal of Interferon and Cytokine Research, 2010, 30, 617-628.	0.5	29
50	IL-28A, IL-28B, and IL-29: Promising cytokines with type I interferon-like properties. Cytokine and Growth Factor Reviews, 2010, 21, 237-251.	3.2	143
51	Interleukin-22: A cytokine produced by T, NK and NKT cell subsets, with importance in the innate immune defense and tissue protection. Cytokine and Growth Factor Reviews, 2010, 21, 365-379.	3.2	209
52	Biology of interleukin-10. Cytokine and Growth Factor Reviews, 2010, 21, 331-344.	3.2	811
53	Differential IL-23 requirement for IL-22 and IL-17A production during innate immunity against Salmonella enterica serovar Enteritidis. International Immunology, 2009, 21, 555-565.	1.8	55
54	Interleukin (IL)-23 mediates <i>Toxoplasma gondii</i> –induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17. Journal of Experimental Medicine, 2009, 206, 3047-3059.	4.2	262

#	Article	IF	CITATIONS
55	Osteopontin as twoâ€sided mediator of intestinal inflammation. Journal of Cellular and Molecular Medicine, 2009, 13, 1162-1174.	1.6	69
56	The Th17 cytokine ILâ€22 induces ILâ€20 production in keratinocytes: A novel immunological cascade with potential relevance in psoriasis. European Journal of Immunology, 2009, 39, 3570-3581.	1.6	145
57	IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-Î ³ are not. Journal of Molecular Medicine, 2009, 87, 523-536.	1.7	355
58	Despite IFN-λ receptor expression, blood immune cells, but not keratinocytes or melanocytes, have an impaired response to type III interferons: implications for therapeutic applications of these cytokines. Genes and Immunity, 2009, 10, 702-714.	2.2	185
59	IL-22 and IL-17: Common and different properties. , 2009, , 13-38.		Ο
60	Long-term interleukin-10 presence induces the development of a novel, monocyte-derived cell type. Clinical and Experimental Immunology, 2008, 151, 306-316.	1.1	8
61	Maturing dendritic cells are an important source of IL-29 and IL-20 that may cooperatively increase the innate immunity of keratinocytes. Journal of Leukocyte Biology, 2008, 83, 1181-1193.	1.5	139
62	A Simple Assay to Measure Phagocytosis of Live Bacteria. Clinical Chemistry, 2008, 54, 911-915.	1.5	22
63	Protective Immunity to Systemic Infection with Attenuated <i>Salmonella enterica</i> serovar Enteritidis in the Absence of IL-12 Is Associated with IL-23-Dependent IL-22, but Not IL-17. Journal of Immunology, 2008, 181, 7891-7901.	0.4	110
64	IL-22 Induces Lipopolysaccharide-Binding Protein in Hepatocytes: A Potential Systemic Role of IL-22 in Crohn's Disease. Journal of Immunology, 2007, 178, 5973-5981.	0.4	254
65	Reduced monocyte CD86 expression in postinflammatory immunodeficiency. Critical Care Medicine, 2007, 35, 458-467.	0.4	28
66	Three decades of psoriasis research: where has it led us?. Clinics in Dermatology, 2007, 25, 504-509.	0.8	39
67	IL-19 and IL-20: two novel cytokines with importance in inflammatory diseases. Expert Opinion on Therapeutic Targets, 2007, 11, 601-612.	1.5	89
68	Immunopathogenesis of psoriasis. Experimental Dermatology, 2007, 16, 779-798.	1.4	352
69	Interleukin-22: A novel T- and NK-cell derived cytokine that regulates the biology of tissue cells. Cytokine and Growth Factor Reviews, 2006, 17, 367-380.	3.2	277
70	Human Interleukin-19: Structure, Function and Disease Associations. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2006, 5, 233-242.	1.1	2
71	Soluble Receptors of the Interleukin-10 Family of Cytokines: Interleukin-22 Receptor Alpha 2. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2006, 5, 215-221.	1.1	0
72	Interleukin (IL)-19, IL-20 and IL-24 are produced by and act on keratinocytes and are distinct from classical ILs. Experimental Dermatology, 2006, 15, 991-1004.	1.4	211

#	Article	IF	CITATIONS
73	Pan-selectin antagonism improves psoriasis manifestation in mice and man. Archives of Dermatological Research, 2006, 297, 345-351.	1.1	59
74	IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. European Journal of Immunology, 2006, 36, 1309-1323.	1.6	833
75	The evaluation of psoriasis therapy with biologics leads to a revision of the current view of the pathogenesis of this disorder. Expert Opinion on Therapeutic Targets, 2006, 10, 817-831.	1.5	27
76	Is there an interaction between interleukin-10 and interleukin-22?. Genes and Immunity, 2005, 6, 8-18.	2.2	99
77	The expression of legumain, an asparaginyl endopeptidase that controls antigen processing, is reduced in endotoxin-tolerant monocytes. Genes and Immunity, 2005, 6, 452-456.	2.2	47
78	Cloning of murine IL-22 receptor alpha 2 and comparison with its human counterpart. Genes and Immunity, 2004, 5, 330-336.	2.2	58
79	Expression profiling of IL-10-regulated genes in human monocytes and peripheral blood mononuclear cells from psoriatic patients during IL-10 therapy. European Journal of Immunology, 2004, 34, 481-493.	1.6	79
80	IL-22 Increases the Innate Immunity of Tissues. Immunity, 2004, 21, 241-254.	6.6	1,245
81	Ultraviolet B Radiation-Mediated Inhibition of Interferon-Î ³ -Induced Keratinocyte Activation Is Independent of Interleukin-10 and Other Soluble Mediators But Associated with Enhanced Intracellular Suppressors of Cytokine-Signaling Expression. Journal of Investigative Dermatology, 2003. 121. 845-852.	0.3	14
82	Multiple Mechanisms of Reduced Major Histocompatibility Complex Class II Expression in Endotoxin Tolerance. Journal of Biological Chemistry, 2003, 278, 18030-18036.	1.6	66
83	Keratinocyte unresponsiveness towards interleukin-10: lack of specific binding due to deficient IL-10 receptor 1 expression. Experimental Dermatology, 2003, 12, 137-144.	1.4	18
84	Cutting Edge: Immune Cells as Sources and Targets of the IL-10 Family Members?. Journal of Immunology, 2002, 168, 5397-5402.	0.4	533
85	A novel, soluble homologue of the human IL-10 receptor with preferential expression in placenta. Genes and Immunity, 2001, 2, 329-334.	2.2	62
86	Impaired antigen presentation by human monocytes during endotoxin tolerance. Blood, 2000, 96, 218-223.	0.6	242
87	Impaired antigen presentation by human monocytes during endotoxin tolerance. Blood, 2000, 96, 218-223.	0.6	76
88	Impaired antigen presentation by human monocytes during endotoxin tolerance. Blood, 2000, 96, 218-23.	0.6	100
89	Comparison of Monocyte Functions after LPS- or IL-10-Induced Reorientation: Importance in Clinical Immunoparalysis. Pathobiology, 1999, 67, 253-256.	1.9	69
90	Unmet Medical Needs in Chronic, Non-communicable Inflammatory Skin Diseases. Frontiers in Medicine, 0, 9, .	1.2	51