Zoran S Petrovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6075374/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From Natural Oils to Epoxy Resins: A New Paradigm in Renewable Performance Materials. Journal of Polymers and the Environment, 2022, 30, 765-775.	5.0	5
2	Epoxy resins and composites from epoxidized linseed oil copolymers with cyclohexene oxide. Biocatalysis and Agricultural Biotechnology, 2022, 39, 102269.	3.1	6
3	Room Temperature Cationic Polymerization of Epoxy Methyl Oleate with B(C6F5)3. Journal of Polymers and the Environment, 2021, 29, 2072-2079.	5.0	7
4	Tough thermosetting polyurethanes and adhesives from rubber seed oil by hydroformylation. Journal of Applied Polymer Science, 2020, 137, 48509.	2.6	10
5	Bioâ€Based, Selfâ€Condensed Polyols. European Journal of Lipid Science and Technology, 2020, 122, 2000033.	1.5	6
6	Silica-Filled Composites from Epoxidized Natural Oils. Journal of Polymers and the Environment, 2020, 28, 1292-1301.	5.0	10
7	On the Mechanism of Baseâ€Catalyzed Glycerol Polymerization and Copolymerization. European Journal of Lipid Science and Technology, 2018, 120, 1800004.	1.5	14
8	Biobased Aromatic-Aliphatic Polyols from Cardanol by Photochemical Thiol-ene Reaction. Journal of Renewable Materials, 2018, , .	2.2	0
9	Biobased Aromatic-Aliphatic Polyols from Cardanol by Thermal Thiol-Ene Reaction. Journal of Renewable Materials, 2018, 6, 87-101.	2.2	14
10	Fast-responding bio-based shape memory thermoplastic polyurethanes. Polymer, 2017, 121, 26-37.	3.8	53
11	High value polyurethane resins from rubber seed oil. Polymer International, 2017, 66, 126-132.	3.1	4
12	EPDM RUBBER PLASTICIZED WITH POLYMERIC SOYBEAN OIL OF DIFFERENT MOLECULAR WEIGHTS. Rubber Chemistry and Technology, 2017, 90, 667-682.	1.2	12
13	Study on the reaction of amines with internal epoxides. European Journal of Lipid Science and Technology, 2016, 118, 1507-1511.	1.5	15
14	Highly functional polyols from castor oil for rigid polyurethanes. European Polymer Journal, 2016, 84, 736-749.	5.4	102
15	Polymercaptan-based polyurethane foams. Journal of Cellular Plastics, 2016, 52, 643-656.	2.4	5
16	Thermoplastic polyurethanes with controlled morphology based on methylenediphenyldiisocyanate/isosorbide/butanediol hard segments. Polymer International, 2015, 64, 1607-1616.	3.1	27
17	Segmented polyurethane elastomers by nonisocyanate route. Journal of Applied Polymer Science, 2015, 132, .	2.6	55
18	Thermoplastic polyurethanes with isosorbide chain extender. Journal of Applied Polymer Science, 2015, 132, .	2.6	18

#	Article	IF	CITATIONS
19	Alkynated and azidated octadecane as model compounds for kinetic studies of Huisgen 1,3â€dipolar cycloaddition in vegetable oils. European Journal of Lipid Science and Technology, 2015, 117, 266-270.	1.5	6
20	Functionalized vegetable oils as precursors for polymers by thiol-ene reaction. European Polymer Journal, 2015, 67, 439-448.	5.4	66
21	Biodegradability study of polylactic acid/ thermoplastic polyurethane blends. Polymer Testing, 2015, 47, 1-3.	4.8	52
22	Surface modified graphene/single-phase polyurethane elastomers with improved thermo-mechanical and dielectric properties. European Polymer Journal, 2015, 70, 55-65.	5.4	26
23	Synthesis of a Novel Limonene Based Mannich Polyol for Rigid Polyurethane Foams. Journal of Polymers and the Environment, 2015, 23, 261-268.	5.0	23
24	Polyacids from Corn Oil as Curing Agents for Epoxy Resins. ACS Symposium Series, 2015, , 223-233.	0.5	1
25	Biocompatible fibers from thermoplastic polyurethane reinforced with polylactic acid microfibers. European Polymer Journal, 2015, 63, 20-28.	5.4	35
26	Polyurethane molded foams with high content of hyperbranched polyols from soybean oil. Journal of Cellular Plastics, 2015, 51, 289-306.	2.4	7
27	Thermoplastic polyurethane elastomers from modified oleic acid. Polymer International, 2014, 63, 1771-1776.	3.1	10
28	Advanced materials from corn: isosorbide-based epoxy resins. Polymer Chemistry, 2014, 5, 5360-5368.	3.9	101
29	Bioâ€plastics and elastomers from polylactic acid/thermoplastic polyurethane blends. Journal of Applied Polymer Science, 2014, 131, .	2.6	70
30	Vegetable oil cast resins via click chemistry: Effects of crossâ€linkers. European Journal of Lipid Science and Technology, 2013, 115, 55-60.	1.5	21
31	Thermosetting allyl resins derived from soybean fatty acids. Journal of Applied Polymer Science, 2013, 127, 432-438.	2.6	9
32	Polyurethanes from soybean oil, aromatic, and cycloaliphatic diamines by nonisocyanate route. Journal of Applied Polymer Science, 2013, 128, 566-571.	2.6	98
33	Biological Oils as Precursors to Novel Polymeric Materials. Journal of Renewable Materials, 2013, 1, 167-186.	2.2	17
34	Polyols and Polyurethanes from Crude Algal Oil. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 1073-1078.	1.9	65
35	Phase structure in segmented polyurethanes having fatty acid-based soft segments. Polymer, 2013, 54, 372-380.	3.8	47
36	Novel elastomeric polyurethane fibers modified with polypropylene microfibers. European Polymer Journal. 2013, 49, 3947-3955.	5.4	9

#	Article	IF	CITATIONS
37	SOYBEAN OIL PLASTICIZERS AS REPLACEMENT OF PETROLEUM OIL IN RUBBER. Rubber Chemistry and Technology, 2013, 86, 233-249.	1.2	74
38	Polyols and Rigid Polyurethane Foams from Cashew Nut Shell Liquid. Journal of Polymers and the Environment, 2012, 20, 647-658.	5.0	81
39	Biopolymers from Vegetable Oils via Catalyst- and Solvent-Free "Click―Chemistry: Effects of Cross-Linking Density. Biomacromolecules, 2012, 13, 261-266.	5.4	56
40	Hyperbranched polyols from hydroformylated methyl soyate. Journal of Applied Polymer Science, 2012, 125, 2920-2928.	2.6	16
41	Solution properties of biobased hyperbranched polyols investigated by multipleâ€detection size exclusion chromatography. Journal of Applied Polymer Science, 2012, 125, E586.	2.6	6
42	High strength thermoresponsive semiâ€ŀPN hydrogels reinforced with nanoclays. Journal of Applied Polymer Science, 2012, 124, 3024-3036.	2.6	18
43	Polyurethanes from Hybrid Vegetable Oil/Petrochemical Polyester Polyols. ACS Symposium Series, 2011, , 73-93.	0.5	4
44	Thermosetting Allyl Resins Derived from Soybean Oil. Macromolecules, 2011, 44, 7149-7157.	4.8	55
45	Phenolation of vegetable oils. Journal of the Serbian Chemical Society, 2011, 76, 591-606.	0.8	35
46	Novel Thermoplastic Polyurethane Elastomers Based on Methyl-12-Hydroxy Stearate. ACS Symposium Series, 2010, , 29-39.	0.5	6
47	Ethoxylated Soybean Polyols for Polyurethanes. Journal of Polymers and the Environment, 2010, 18, 1-7.	5.0	17
48	Biodegradation of Thermoplastic Polyurethanes from Vegetable Oils. Journal of Polymers and the Environment, 2010, 18, 94-97.	5.0	44
49	Vegetable oil-based triols from hydroformylated fatty acids and polyurethane elastomers. European Journal of Lipid Science and Technology, 2010, 112, 97-102.	1.5	67
50	A Chemical Route to High Molecular Weight Vegetable Oil-Based Polyhydroxyalkanoate. Macromolecules, 2010, 43, 4120-4125.	4.8	59
51	High Functionality Polyether Polyols Based on Polyglycerol. Journal of Cellular Plastics, 2010, 46, 223-237.	2.4	37
52	POLYMERS FROM BIOLOGICAL OILS. Contemporary Materials, 2010, 1, 39-50.	0.1	40
53	Semiâ€interpenetrating networks based on poly(<i>N</i> â€isopropyl acrylamide) and poly(<i>N</i> â€vinylpyrrolidone). Journal of Applied Polymer Science, 2009, 113, 1593-1603.	2.6	24
54	Polyacetal Polyols for Polyurethanes. Journal of Polymers and the Environment, 2009, 17, 123-130.	5.0	6

#	Article	IF	CITATIONS
55	Irradiation and annealing effects on delamination toughness in carbon/epoxy composite. Journal of Nuclear Materials, 2009, 383, 209-214.	2.7	5
56	Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments. Polymer, 2008, 49, 4248-4258.	3.8	212
57	Primary Hydroxyl Content of Soybean Polyols. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 465-473.	1.9	13
58	Comments on the Paper: Kinetics Studies on Oxirane Cleavage of Epoxidized Soybean Oil by Methanol and Characterization of Polyols. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 1185-1186.	1.9	2
59	Polyurethane networks from polyols obtained by hydroformylation of soybean oil. Polymer International, 2008, 57, 275-281.	3.1	147
60	Polyester polyols and polyurethanes from ricinoleic acid. Journal of Applied Polymer Science, 2008, 108, 1184-1190.	2.6	86
61	Soyâ€based polyurethanes by nonisocyanate route. Journal of Applied Polymer Science, 2008, 108, 3867-3875.	2.6	155
62	Polyurethanes from Vegetable Oils. Polymer Reviews, 2008, 48, 109-155.	10.9	778
63	Preparation of 9-hydroxynonanoic acid methyl ester by ozonolysis of vegetable oils and its polycondensation. Hemijska Industrija, 2008, 62, 319-328.	0.7	20
64	Network structure and properties of polyurethanes from soybean oil. Journal of Applied Polymer Science, 2007, 105, 2717-2727.	2.6	124
65	Ethoxylated Soybean Polyols for Polyurethanes. Journal of Polymers and the Environment, 2007, 15, 237-243.	5.0	70
66	Structure–property relationships in polyurethanes derived from soybean oil. Journal of Materials Science, 2006, 41, 4914-4920.	3.7	112
67	Optimization of the chemoenzymatic epoxidation of soybean oil. JAOCS, Journal of the American Oil Chemists' Society, 2006, 83, 247-252.	1.9	148
68	Thermal and mechanical properties of glass reinforced soy-based polyurethane composites. Composites Science and Technology, 2005, 65, 19-25.	7.8	141
69	Soy-oil-based segmented polyurethanes. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3178-3190.	2.1	47
70	Structure and Properties of Polyurethanes Prepared from Triglyceride Polyols by Ozonolysis. Biomacromolecules, 2005, 6, 713-719.	5.4	291
71	Effect of silica nanoparticles on morphology of segmented polyurethanes. Polymer, 2004, 45, 4285-4295.	3.8	75
72	Effect of structure on properties of polyols and polyurethanes based on different vegetable oils. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 809-819.	2.1	318

#	Article	IF	CITATIONS
73	Semi-interpenetrating polymer networks composed of poly(N-isopropyl acrylamide) and polyacrylamide hydrogels. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 3987-3999.	2.1	35
74	Plastics and Composites from Soybean Oil. , 2004, , 167-192.		12
75	The study of oxazolidone formation from 9,10-epoxyoctadecane and phenylisocyanate. JAOCS, Journal of the American Oil Chemists' Society, 2003, 80, 595-600.	1.9	16
76	Multiphase-Separated Polyurethanes Studied by Micro-Raman Spectroscopy. Macromolecular Rapid Communications, 2003, 24, 265-268.	3.9	51
77	Effect of different isocyanates on the properties of soy-based polyurethanes. Journal of Applied Polymer Science, 2003, 88, 2912-2916.	2.6	142
78	Soybean oil based polyisocyanurate cast resins. Journal of Applied Polymer Science, 2003, 90, 3333-3337.	2.6	9
79	Spherulite Crystallization in Poly(ethylene oxide)–Silica Nanocomposites. Retardation of Growth Rates through Reduced Molecular Mobility. Polymer Journal, 2002, 34, 876-881.	2.7	49
80	Effect of Nano-and Micro-Silica Fillers on Polyurethane Foam Properties. Journal of Cellular Plastics, 2002, 38, 229-239.	2.4	122
81	Structure and Properties of Triolein-Based Polyurethane Networks. Biomacromolecules, 2002, 3, 1048-1056.	5.4	152
82	Epoxidation of soybean oil in toluene with peroxoacetic and peroxoformic acids— kinetics and side reactions. European Journal of Lipid Science and Technology, 2002, 104, 293-299.	1.5	247
83	Kinetics of the hydroformylation of soybean oil by ligand-modified homogeneous rhodium catalysis. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 1221-1225.	1.9	23
84	The hydroformylation of vegetable oils and model compounds by ligand modified rhodium catalysis. Journal of Molecular Catalysis A, 2002, 184, 65-71.	4.8	59
85	Synthesis, structural characterization, and properties of polyurethane elastomers containing various degrees of unsaturation in the chain extenders. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1316-1333.	2.1	11
86	Effect of OH/NCO Molar Ratio on Properties of Soy-Based Polyurethane Networks. Journal of Polymers and the Environment, 2002, 10, 5-12.	5.0	73
87	Polyols and Polyurethanes from Hydroformylation of Soybean Oil. Journal of Polymers and the Environment, 2002, 10, 49-52.	5.0	269
88	Kinetics of in situ epoxidation of soybean oil in bulk catalyzed by ion exchange resin. JAOCS, Journal of the American Oil Chemists' Society, 2001, 78, 725-731.	1.9	116
89	Structure and properties of polyurethane-silica nanocomposites. Journal of Applied Polymer Science, 2000, 76, 133-151.	2.6	310
90	Rigid polyurethane foams based on soybean oil. Journal of Applied Polymer Science, 2000, 77, 467-473.	2.6	311

#	Article	IF	CITATIONS
91	Thermal stability of polyurethanes based on vegetable oils. Journal of Applied Polymer Science, 2000, 77, 1723-1734.	2.6	349
92	Structure and properties of halogenated and nonhalogenated soy-based polyols. Journal of Polymer Science Part A, 2000, 38, 3900-3910.	2.3	272
93	Structure and properties of polyurethanes based on halogenated and nonhalogenated soy-polyols. Journal of Polymer Science Part A, 2000, 38, 4062-4069.	2.3	140
94	Structure and properties of polyurethane $\hat{a} \in \hat{s}$ ilica nanocomposites. , 2000, 76, 133.		1
95	Phase Behavior and Properties of Polyurethane-PVC Blends and Fibers. Rubber Chemistry and Technology, 1999, 72, 587-601.	1.2	2
96	Structure and physical properties of segmented polyurethane elastomers containing chemical crosslinks in the hard segment. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 221-235.	2.1	122
97	Mechanical and dielectric properties of segmented polyurethane elastomers containing chemical crosslinks in the hard segment. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 237-251.	2.1	20
98	Effect of temperature and HV monomer concentration on parameters of the unit cell of the PHB/HV biopolymer crystal. Polymer, 1997, 38, 1239-1242.	3.8	3
99	Effect of addition of polyethylene on properties of polypropylene/ethylene-propylene rubber blends. Journal of Applied Polymer Science, 1996, 59, 301-310.	2.6	39
100	Structure–property relationship in fibers spun from poly(ethylene terephthalate) and liquid crystalline polymer blends. I. The effect of composition and processing on fiber morphology and properties. Journal of Applied Polymer Science, 1995, 58, 1077-1085.	2.6	7
101	Structure–property relationship in fibers spun from poly(ethylene terephthalate) and liquid crystalline polymer blends. II. Effect of spinning temperature on fiber properties. Journal of Applied Polymer Science, 1995, 58, 1349-1363.	2.6	6
102	Morphology and properties of fibers based on polycarbonate/liquid crystalline polymer blends. Polymers for Advanced Technologies, 1995, 6, 91-99.	3.2	8
103	Thermal degradation of segmented polyurethanes. Journal of Applied Polymer Science, 1994, 51, 1087-1095.	2.6	341
104	Novel dielectrics from IPNs derived from castor oil based polyurethanes. Journal of Applied Polymer Science, 1994, 53, 1083-1090.	2.6	10
105	Polypropylene–Carbon black interaction in conductive composites. Journal of Applied Polymer Science, 1993, 49, 1659-1669.	2.6	52
106	Effect of the ratio of reactive groups on gelation and cyclization during polyurethane network formation. Polymer, 1993, 34, 5157-5162.	3.8	12
107	The effect of hard segment structure on rheological properties of solutions of segmented polyurethanes. European Polymer Journal, 1992, 28, 637-642.	5.4	5
108	Applied Dielectric Spectroscopy of Polymeric Composites. Polymer-Plastics Technology and Engineering, 1991, 30, 183-225.	1.9	14

#	Article	IF	CITATIONS
109	Polyurethane elastomers. Progress in Polymer Science, 1991, 16, 695-836.	24.7	586
110	The effect of crosslinking on properties of polyurethane elastomers. Journal of Applied Polymer Science, 1991, 42, 391-398.	2.6	41
111	Polyurethane–polypropylene blends. Journal of Applied Polymer Science, 1991, 42, 779-790.	2.6	11
112	The application of size exclusion chromatography equipped with RI and LALLS detectors to study network formation. Polymer Bulletin, 1991, 27, 281-287.	3.3	2
113	Class transition temperatures Tg of poly(tolyl methacrylates) and poly(di-xylenyl itaconates). Polymer Bulletin, 1991, 27, 331-336.	3.3	8
114	AC and DC dielectric properties of some polypropylene/calcium carbonate composites. Polymer Engineering and Science, 1990, 30, 374-383.	3.1	11
115	Study of post-gelation reaction by differential scanning calorimetry. Polymer, 1990, 31, 1514-1518.	3.8	3
116	The effect of segment length and concentration on dielectric properties of polypropyleneoxide-based polyurethanes. Colloid and Polymer Science, 1989, 267, 1077-1086.	2.1	7
117	Trifluoroacetylation of segmented polyurethanes. European Polymer Journal, 1989, 25, 297-300.	5.4	1
118	Dielectric properties of segmented polytetramethyleneoxide-based polyurethanes. Journal of Applied Polymer Science, 1989, 38, 1929-1940.	2.6	8
119	The effect of soft-segment length and concentration on phase separation in segmented polyurethanes. Journal of Polymer Science, Part B: Polymer Physics, 1989, 27, 545-560.	2.1	75
120	Study of epoxy resin—filler interaction. Polymer Composites, 1988, 9, 42-50.	4.6	16
121	Molecular motions in model network polymers. Macromolecules, 1988, 21, 338-346.	4.8	33
122	Swelling of model networks. Macromolecules, 1987, 20, 1088-1096.	4.8	47
123	Rheology of model polyurethanes at the gel point. Macromolecules, 1986, 19, 2146-2149.	4.8	250
124	Reliability of methods for determination of kinetic parameters from thermogravimetry and DSC measurements. Journal of Applied Polymer Science, 1986, 32, 4353-4367.	2.6	90
125	Study of the Effect of Soft-Segment Length and Concentration on Properties of Polyetherurethanes. I. The Effect on Physical and Morphological Properties. Rubber Chemistry and Technology, 1985, 58, 685-700.	1.2	53
126	Study of the Effect of Soft-Segment Length and Concentration on Properties of Polyetherurethanes. II. The Effect on Mechanical Properties. Rubber Chemistry and Technology, 1985, 58, 701-712.	1.2	21

#	Article	IF	CITATIONS
127	Preparation and properties of castor oil-based polyurethanes. Journal of Applied Polymer Science, 1984, 29, 1031-1040.	2.6	69
128	Thermal stability of segmented polyurethanes. European Polymer Journal, 1976, 12, 177-181.	5.4	81