
Leonardo S Vanzetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6074996/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MITE Tracker: an accurate approach to identify miniature inverted-repeat transposable elements in large genomes. BMC Bioinformatics, 2018, 19, 348.	2.6	97
2	Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development. Theoretical and Applied Genetics, 2018, 131, 2021-2035.	3.6	94
3	Exogenous Gibberellins Induce Wheat Spike Development under Short Days Only in the Presence of <i>VERNALIZATION1</i> Â Â Â. Plant Physiology, 2013, 163, 1433-1445.	4.8	89
4	Small RNAs, DNA methylation and transposable elements in wheat. BMC Genomics, 2010, 11, 408.	2.8	82
5	Haplotype block analysis of an Argentinean hexaploid wheat collection and GWAS for yield components and adaptation. BMC Plant Biology, 2019, 19, 553.	3.6	73
6	Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat. Molecular Genetics and Genomics, 2014, 289, 47-62.	2.1	48
7	Relationship Between Soft Wheat Flour Physicochemical Composition and Cookieâ€Making Performance. Cereal Chemistry, 2011, 88, 130-136.	2.2	47
8	Effect of Vrn-1, Ppd-1 genes and earliness per se on heading time in Argentinean bread wheat cultivars. Field Crops Research, 2014, 158, 73-81.	5.1	46
9	Variability of duration of pre-anthesis phases as a strategy for increasing wheat grain yield. Field Crops Research, 2011, 124, 408-416.	5.1	32
10	Identification of leaf rust resistance genes i n selected Argentinean bread wheat cultivars by gene postulation and molecular markers. Electronic Journal of Biotechnology, 2011, 14, .	2.2	31
11	Registration of â€~BIOINTA 2004' Wheat. Journal of Plant Registrations, 2009, 3, 165-169.	0.5	20
12	New insights into the wheat chromosome 4D structure and virtual gene order, revealed by survey pyrosequencing. Plant Science, 2015, 233, 200-212.	3.6	20
13	Genetic variability for waxy genes in Argentinean bread wheat germplasm. Electronic Journal of Biotechnology, 2009, 12, 0-0.	2.2	17
14	Effect of high molecular weight glutenins and rye translocations on soft wheat flour cookie quality. Journal of Cereal Science, 2013, 58, 424-430.	3.7	16
15	Genetic structure of Argentinean hexaploid wheat germplasm. Genetics and Molecular Biology, 2013, 36, 391-399.	1.3	15
16	A comprehensive study of spike fruiting efficiency in wheat. Crop Science, 2020, 60, 1541-1555.	1.8	14
17	Phenobook: an open source software for phenotypic data collection. GigaScience, 2017, 6, 1-5.	6.4	12
18	Genomic re-assessment of the transposable element landscape of the potato genome. Plant Cell Reports, 2020, 39, 1161-1174.	5.6	12

#	Article	IF	CITATIONS
19	Identification and validation of QTL for spike fertile floret and fruiting efficiencies in hexaploid wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2020, 133, 2655-2671.	3.6	12
20	Mapping QTL for spike fertility and related traits in two doubled haploid wheat (Triticum aestivum L.) populations. BMC Plant Biology, 2021, 21, 353.	3.6	12
21	Genome-wide identification of MITE-derived microRNAs and their targets in bread wheat. BMC Genomics, 2022, 23, 154.	2.8	9
22	Identification of a null allele at the <i>Wxâ€A1</i> locus in durum wheat (<i>Triticum turgidum</i> L.) Tj ETQq0 (0 0 rgBT /C 1.9	vgrlock 10 T
23	The physiology and genetics behind fruiting efficiency: a promising spike trait to improve wheat yield potential. Journal of Experimental Botany, 2021, 72, 3987-4004.	4.8	8

24	MS INTA 416: A new Argentinean wheat cultivar carrying Fhb1 and Lr47 resistance genes. Crop Breeding and Applied Biotechnology, 2017, 17, 280-286.	0.4	7
25	Increasing grain yield in bread wheat (<i>Triticum aestivum</i>) by selection for high spike fertility index. Plant Breeding, 2021, 140, 575-584.	1.9	3
26	QTL mapping of spike fertility index in bread wheat. Crop Breeding and Applied Biotechnology, 2021, 21, .	0.4	0
27	Genetic Resistance to Fusarium Head Blight in Wheat (Triticum aestivum L.). Current Status in Argentina. , 2013, , 231-240.		0