Kyle P Kelley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6074759/publications.pdf Version: 2024-02-01

KVIE D KELLEV

#	Article	IF	CITATIONS
1	Anisotropic epitaxial stabilization of a low-symmetry ferroelectric with enhanced electromechanical response. Nature Materials, 2022, 21, 74-80.	27.5	35
2	Oxygen Vacancy Injection as a Pathway to Enhancing Electromechanical Response in Ferroelectrics. Advanced Materials, 2022, 34, e2106426.	21.0	20
3	Experimental discovery of structure–property relationships in ferroelectric materials via active learning. Nature Machine Intelligence, 2022, 4, 341-350.	16.0	37
4	Exploring leakage in dielectric films via automated experiments in scanning probe microscopy. Applied Physics Letters, 2022, 120, .	3.3	5
5	Long-lived modulation of plasmonic absorption by ballistic thermal injection. Nature Nanotechnology, 2021, 16, 47-51.	31.5	40
6	Toward Decoding the Relationship between Domain Structure and Functionality in Ferroelectrics via Hidden Latent Variables. ACS Applied Materials & Interfaces, 2021, 13, 1693-1703.	8.0	22
7	Exotic Long-Range Surface Reconstruction on La _{0.7} Sr _{0.3} MnO ₃ Thin Films. ACS Applied Materials & Interfaces, 2021, 13, 9166-9173.	8.0	6
8	Mid-wave to near-IR optoelectronic properties and epsilon-near-zero behavior in indium-doped cadmium oxide. Physical Review Materials, 2021, 5, .	2.4	12
9	Autonomous Experiments in Scanning Probe Microscopy and Spectroscopy: Choosing Where to Explore Polarization Dynamics in Ferroelectrics. ACS Nano, 2021, 15, 11253-11262.	14.6	23
10	Automated and Autonomous Experiments in Electron and Scanning Probe Microscopy. ACS Nano, 2021, 15, 12604-12627.	14.6	49
11	Decoding the shift-invariant data: applications for band-excitation scanning probe microscopy [*] . Machine Learning: Science and Technology, 2021, 2, 045028.	5.0	5
12	Probing polarization dynamics at specific domain configurations: Computer-vision based automated experiment in piezoresponse force microscopy. Applied Physics Letters, 2021, 119, .	3.3	5
13	Probing Metastable Domain Dynamics <i>via</i> Automated Experimentation in Piezoresponse Force Microscopy. ACS Nano, 2021, 15, 15096-15103.	14.6	6
14	Unusual electrical conductivity driven by localized stoichiometry modification at vertical epitaxial interfaces. Materials Horizons, 2020, 7, 3217-3225.	12.2	5
15	Piezoelectric domain walls in van der Waals antiferroelectric CuInP2Se6. Nature Communications, 2020, 11, 3623.	12.8	47
16	Dynamic Manipulation in Piezoresponse Force Microscopy: Creating Nonequilibrium Phases with Large Electromechanical Response. ACS Nano, 2020, 14, 10569-10577.	14.6	14
17	Fast Scanning Probe Microscopy via Machine Learning: Nonâ€Rectangular Scans with Compressed Sensing and Gaussian Process Optimization. Small, 2020, 16, e200278.	10.0	37
18	Tensor factorization for elucidating mechanisms of piezoresponse relaxation via dynamic Piezoresponse Force Spectroscopy. Npj Computational Materials, 2020, 6, .	8.7	2

Kyle P Kelley

#	Article	IF	CITATIONS
19	Bayesian inference in band excitation scanning probe microscopy for optimal dynamic model selection in imaging. Journal of Applied Physics, 2020, 128, 054105.	2.5	8
20	Phenomenological description of bright domain walls in ferroelectric-antiferroelectric layered chalcogenides. Physical Review B, 2020, 102, .	3.2	10
21	Ultraviolet to far-infrared dielectric function of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>n</mml:mi></mml:mrow>-doped cadmium oxide thin films. Physical Review Materials, 2020, 4, .</mml:math 	iatzh4	16
22	High-harmonic generation from an epsilon-near-zero material. Nature Physics, 2019, 15, 1022-1026.	16.7	137
23	Multiple Epsilon-Near-Zero Resonances in Multilayered Cadmium Oxide: Designing Metamaterial-Like Optical Properties in Monolithic Materials. ACS Photonics, 2019, 6, 1139-1145.	6.6	33
24	Polaritonic Hybrid-Epsilon-near-Zero Modes: Beating the Plasmonic Confinement vs Propagation-Length Trade-Off with Doped Cadmium Oxide Bilayers. Nano Letters, 2019, 19, 948-957.	9.1	61
25	Charge confinement and thermal transport processes in modulation-doped epitaxial crystals lacking lattice interfaces. Physical Review Materials, 2019, 3, .	2.4	2
26	Complexities of atomic structure at CdO/MgO and CdO/Al2O3 interfaces. Journal of Applied Physics, 2018, 124, .	2.5	2
27	Viscoelastic optical nonlocality of low-loss epsilon-near-zero nanofilms. Scientific Reports, 2018, 8, 9335.	3.3	30
28	Photonically Tunable MIR Epsilon-Near Zero Modes in CdO Thin Films. , 2018, , .		2
29	Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nature Photonics, 2017, 11, 390-395.	31.4	245
30	Epsilon-near-Zero Modes and Surface Plasmon Resonance in Fluorine-Doped Cadmium Oxide Thin Films. ACS Photonics, 2017, 4, 1885-1892.	6.6	69
31	High mobility yttrium doped cadmium oxide thin films. APL Materials, 2017, 5, .	5.1	43
32	Observation of nonlocal optical response in doped-cadmium-oxide epsilon-near-zero thin films. , 2017, ,		0