
Chen Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6074568/publications.pdf Version: 2024-02-01

CHEN SHEN

#	Article	IF	CITATIONS
1	Towards an automated robotic arc-welding-based additive manufacturing system from CAD to finished part. CAD Computer Aided Design, 2016, 73, 66-75.	1.4	138
2	Fabricating Superior NiAl Bronze Components through Wire Arc Additive Manufacturing. Materials, 2016, 9, 652.	1.3	135
3	Fabrication of Fe-FeAl Functionally Graded Material Using the Wire-Arc Additive Manufacturing Process. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 763-772.	1.0	116
4	Characterization of wire arc additively manufactured titanium aluminide functionally graded material: Microstructure, mechanical properties and oxidation behaviour. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 734, 110-119.	2.6	97
5	Fabrication of iron-rich Fe–Al intermetallics using the wire-arc additive manufacturing process. Additive Manufacturing, 2015, 7, 20-26.	1.7	82
6	The effect of postproduction heat treatment on Î ³ -TiAl alloys produced by the GTAW-based additive manufacturing process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 657, 86-95.	2.6	71
7	Effect of interpass temperature on in-situ alloying and additive manufacturing of titanium aluminides using gas tungsten arc welding. Additive Manufacturing, 2015, 8, 71-77.	1.7	70
8	In-depth study of the mechanical properties for Fe3Al based iron aluminide fabricated using the wire-arc additive manufacturing process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 669, 118-126.	2.6	65
9	Fabrication of Copper-Rich Cu-Al Alloy Using the Wire-Arc Additive Manufacturing Process. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 3143-3151.	1.0	61
10	Influences of deposition current and interpass temperature to the Fe3Al-based iron aluminide fabricated using wire-arc additive manufacturing process. International Journal of Advanced Manufacturing Technology, 2017, 88, 2009-2018.	1.5	60
11	The influence of post-production heat treatment on the multi-directional properties of nickel-aluminum bronze alloy fabricated using wire-arc additive manufacturing process. Additive Manufacturing, 2018, 23, 411-421.	1.7	53
12	Fabrication of γ-TiAl intermetallic alloy using the twin-wire plasma arc additive manufacturing process: Microstructure evolution and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 812, 141056.	2.6	41
13	On the development of pseudo-eutectic AlCoCrFeNi2.1 high entropy alloy using Powder-bed Arc Additive Manufacturing (PAAM) process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140639.	2.6	34
14	Effect of Al content on the microstructure and mechanical properties of γ-TiAl alloy fabricated by twin-wire plasma arc additive manufacturing system. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 826, 142008.	2.6	31
15	Influences of postproduction heat treatments on the material anisotropy of nickel-aluminum bronze fabricated using wire-arc additive manufacturing process. International Journal of Advanced Manufacturing Technology, 2019, 103, 3199-3209.	1.5	27
16	Influence of wire-arc additive manufacturing path planning strategy on the residual stress status in one single buildup layer. International Journal of Advanced Manufacturing Technology, 2020, 111, 797-806.	1.5	27
17	Twin-wire plasma arc additive manufacturing of the Ti–45Al titanium aluminide: Processing, microstructures and mechanical properties. Intermetallics, 2021, 136, 107277.	1.8	26
18	Thermal induced phase evolution of Fe–Fe3Ni functionally graded material fabricated using the wire-arc additive manufacturing process: An in-situ neutron diffraction study. Journal of Alloys and Compounds, 2020, 826, 154097.	2.8	25

CHEN SHEN

#	Article	IF	CITATIONS
19	Thermal cycling of Fe3Al based iron aluminide during the wire-arc additive manufacturing process: An in-situ neutron diffraction study. Intermetallics, 2018, 92, 101-107.	1.8	23
20	In-situ neutron diffraction study on the high temperature thermal phase evolution of wire-arc additively manufactured Ni53Ti47 binary alloy. Journal of Alloys and Compounds, 2020, 843, 156020.	2.8	23
21	Neutron diffraction residual stress determinations in Fe3Al based iron aluminide components fabricated using wire-arc additive manufacturing (WAAM). Additive Manufacturing, 2019, 29, 100774.	1.7	22
22	Influences of postproduction heat treatment on Fe3Al-based iron aluminide fabricated using the wire-arc additive manufacturing process. International Journal of Advanced Manufacturing Technology, 2018, 97, 335-344.	1.5	20
23	In-situ neutron diffraction characterization on the phase evolution of \hat{I}^3 -TiAl alloy during the wire-arc additive manufacturing process. Journal of Alloys and Compounds, 2019, 778, 280-287.	2.8	20
24	Precipitation Strengthening in Ni–Cu Alloys Fabricated Using Wire Arc Additive Manufacturing Technology. Metals, 2019, 9, 105.	1.0	19
25	Fabrication of FeNi intermetallic using the wire-arc additive manufacturing process: A feasibility and neutron diffraction phase characterization study. Journal of Manufacturing Processes, 2020, 57, 691-699.	2.8	19
26	Formation of Fe5Si3 precipitate in the Fe2Al5 intermetallic layer of the Al/steel dissimilar arc welding joint: A transmission electron microscopy (TEM) study. Materials Characterization, 2021, 178, 111236.	1.9	19
27	Neutron diffraction residual stress determinations in titanium aluminide component fabricated using the twin wire-arc additive manufacturing. Journal of Manufacturing Processes, 2022, 74, 141-150.	2.8	18
28	Spatter feature analysis in laser welding based on motion tracking method. Journal of Manufacturing Processes, 2020, 55, 220-229.	2.8	17
29	Effects of thermal distribution strategy on a Ti-6Al-4V/304L dissimilar joint fabricated using the variable polarity cold metal transfer arc-brazing method. Materials and Design, 2020, 191, 108619.	3.3	15
30	Effect of the post-production heat treatment on phase evolution in the Fe3Ni–FeNi functionally graded material: An in-situ neutron diffraction study. Intermetallics, 2021, 129, 107032.	1.8	13
31	Effect of substrate temperature on microstructure and mechanical properties of TiAl alloy fabricated using the twin-wire plasma arc additive manufacturing system. Journal of Materials Science, 2022, 57, 8940-8955.	1.7	12
32	Twin-wire directed energy deposition-arc of Ti–48Al–2Cr–2Nb alloy: Feasibility, microstructure, and tensile property investigation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 850, 143566.	2.6	12
33	Multi-physical modelling of alloy element transportation in wire arc additive manufacturing of a <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="bold">î³</mml:mi </mml:mrow></mml:math> -TiAl alloy. International Journal of Thermal Sciences. 2022, 179, 107641.	2.6	11
34	Modification and characterization of the Al concentration induced precipitate in the Fe3Al-based iron aluminide fabricated using the wire-arc additive manufacturing process. Materials Characterization, 2021, 178, 111270.	1.9	10
35	Heat Accumulation, Microstructure Evolution, and Stress Distribution of Ti–Al Alloy Manufactured by Twinâ€Wire Plasma Arc Additive. Advanced Engineering Materials, 2022, 24, .	1.6	10
36	Composition-induced microcrack defect formation in the twin-wire plasma arc additive manufacturing of binary TiAl alloy: An X-ray computed tomography-based investigation. Journal of Materials Research, 2021, 36, 4974-4985.	1.2	9

CHEN SHEN

#	Article	IF	CITATIONS
37	Influence of Thermal Modification on Al-Si Coating of Hot-Stamped 22MnB5 Steel: Microstructure, Phase Transformation, and Mechanical Properties. Journal of Shanghai Jiaotong University (Science), 2021, 26, 747-756.	0.5	5
38	Fibre optic acoustic emission sensor system for hydrogen induced cold crack monitoring in welding applications. , 2016, , .		4
39	Optimization of welding parameters on pores migration in Laser-GMAW of 5083 aluminum alloy based on response surface methodology. SN Applied Sciences, 2019, 1, 1.	1.5	4
40	Microstructure and Fatigue Properties of Ti-48Al Alloy Fabricated by the Twin-Wire Plasma Arc Additive Manufacturing. Journal of Materials Engineering and Performance, 2022, 31, 8250-8260.	1.2	2