Bruno L Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6074497/publications.pdf

Version: 2024-02-01

279778 214788 2,619 46 23 47 citations h-index g-index papers 49 49 49 3594 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Inverse electron demand Diels–Alder reactions in chemical biology. Chemical Society Reviews, 2017, 46, 4895-4950.	38.1	731
2	Contemporary approaches to site-selective protein modification. Nature Reviews Chemistry, 2019, 3, 147-171.	30.2	325
3	Chemo- and Regioselective Lysine Modification on Native Proteins. Journal of the American Chemical Society, 2018, 140, 4004-4017.	13.7	217
4	Stoichiometric and irreversible cysteine-selective protein modification using carbonylacrylic reagents. Nature Communications, 2016, 7, 13128.	12.8	141
5	Emerging protein targets for metal-based pharmaceutical agents: An update. Coordination Chemistry Reviews, 2013, 257, 2689-2704.	18.8	126
6	Vinyl Ether/Tetrazine Pair for the Traceless Release of Alcohols in Cells. Angewandte Chemie - International Edition, 2017, 56, 243-247.	13.8	100
7	A thioether-directed palladium-cleavable linker for targeted bioorthogonal drug decaging. Chemical Science, 2018, 9, 4185-4189.	7.4	71
8	Platinum-Triggered Bond-Cleavage of Pentynoyl Amide and <i>N</i> Propargyl Handles for Drug-Activation. Journal of the American Chemical Society, 2020, 142, 10869-10880.	13.7	68
9	A Fluorogenic Probe for Cell Surface Phosphatidylserine Using an Intramolecular Indicator Displacement Sensing Mechanism. Angewandte Chemie - International Edition, 2019, 58, 3087-3091.	13.8	47
10	Mechanistic insights into transition metal-mediated bioorthogonal uncaging reactions. Chemical Society Reviews, 2020, 49, 7710-7729.	38.1	46
11	A new bisphosphonate-containing 99mTc(I) tricarbonyl complex potentially useful as bone-seeking agent: synthesis and biological evaluation. Journal of Biological Inorganic Chemistry, 2007, 12, 667-679.	2.6	45
12	Multisite Thrombus Imaging and Fibrin Content Estimation With a Single Whole-Body PET Scan in Rats. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2114-2121.	2.4	42
13	In Vivo Molecular Imaging of Thrombosis and Thrombolysis Using a Fibrin-Binding Positron Emission Tomographic Probe. Circulation: Cardiovascular Imaging, 2014, 7, 697-705.	2.6	41
14	99mTc(CO)3-labeled pamidronate and alendronate for bone imaging. Dalton Transactions, 2011, 40, 2787.	3.3	40
15	Peptide-based fibrin-targeting probes for thrombus imaging. Dalton Transactions, 2017, 46, 14488-14508.	3.3	37
16	The Dimeric Structure and the Bivalent Recognition of H3K4me3 by the Tumor Suppressor ING4 Suggests a Mechanism for Enhanced Targeting of the HBO1 Complex to Chromatin. Journal of Molecular Biology, 2010, 396, 1117-1127.	4.2	36
17	Norbornene Probes for the Detection of Cysteine Sulfenic Acid in Cells. ACS Chemical Biology, 2019, 14, 594-598.	3.4	35
18	Development of a bone-targeted pH-sensitive liposomal formulation containing doxorubicin: physicochemical characterization, cytotoxicity, and biodistribution evaluation in a mouse model of bone metastasis. International Journal of Nanomedicine, 2016, Volume 11, 3737-3751.	6.7	31

#	Article	IF	CITATIONS
19	Influence of the Bifunctional Chelator on the Pharmacokinetic Properties of ^{99m} Tc(CO) ₃ -Labeled Cyclic α-Melanocyte Stimulating Hormone Analog. Journal of Medicinal Chemistry, 2013, 56, 1961-1973.	6.4	29
20	A Minimal, Unstrained Sâ€Allyl Handle for Preâ€Targeting Diels–Alder Bioorthogonal Labeling in Live Cells. Angewandte Chemie - International Edition, 2016, 55, 14683-14687.	13.8	29
21	Effect of Chelate Type and Radioisotope on the Imaging Efficacy of 4 Fibrin-Specific PET Probes. Journal of Nuclear Medicine, 2014, 55, 1157-1163.	5.0	25
22	Radicalâ€Mediated Thiolâ€Ene Strategy: Photoactivation of Thiolâ€Containing Drugs in Cancer Cells. Angewandte Chemie - International Edition, 2018, 57, 15832-15835.	13.8	25
23	Radiation Dosimetry of the Fibrin-Binding Probe ⁶⁴ Cu-FBP8 and Its Feasibility for PET Imaging of Deep Vein Thrombosis and Pulmonary Embolism in Rats. Journal of Nuclear Medicine, 2015, 56, 1088-1093.	5.0	24
24	Azabicyclic vinyl sulfones for residue-specific dual protein labelling. Chemical Science, 2019, 10, 4515-4522.	7.4	23
25	Targeting nitric oxide synthase with 99mTc/Re-tricarbonyl complexes containing pendant guanidino or isothiourea moieties. Journal of Organometallic Chemistry, 2011, 696, 1057-1065.	1.8	22
26	Tetrazineâ€Triggered Release of Carboxylicâ€Acidâ€Containing Molecules for Activation of an Antiâ€inflammatory Drug. ChemBioChem, 2019, 20, 1541-1546.	2.6	22
27	Multimodal Molecular Imaging Reveals High Target Uptake and Specificity of ¹¹¹ In- and ⁶⁸ Ga-Labeled Fibrin-Binding Probes for Thrombus Detection in Rats. Journal of Nuclear Medicine, 2015, 56, 1587-1592.	5.0	21
28	Re and sup 99m sysup Tc organometallic complexes containing pendant larginine derivatives as potential probes of inducible nitric oxide synthase. Dalton Transactions, 2009, , 152-162.	3.3	20
29	In Vivo Pretargeting Based on Cysteine-Selective Antibody Modification with IEDDA Bioorthogonal Handles for Click Chemistry. Bioconjugate Chemistry, 2021, 32, 121-132.	3.6	20
30	Vinyl Ether/Tetrazine Pair for the Traceless Release of Alcohols in Cells. Angewandte Chemie, 2017, 129, 249-253.	2.0	19
31	Development of a self-immolative linker for tetrazine-triggered release of alcohols in cells. Organic and Biomolecular Chemistry, 2019, 17, 5725-5730.	2.8	18
32	Re and Tc Tricarbonyl Complexes: From the Suppression of NO Biosynthesis in Macrophages to in Vivo Targeting of Inducible Nitric Oxide Synthase. Bioconjugate Chemistry, 2010, 21, 2168-2172.	3.6	17
33	Collagen labelling with an azide-proline chemical reporter in live cells. Chemical Communications, 2015, 51, 5250-5252.	4.1	16
34	Syntheses of bifunctional 2,3-diamino propionic acid-based chelators as small and strong tripod ligands for the labelling of biomolecules with 99mTc. Organic and Biomolecular Chemistry, 2010, 8, 2829.	2.8	15
35	Insights into the structural determinants for selective inhibition of nitric oxide synthase isoforms. Journal of Molecular Modeling, 2013, 19, 1537-1551.	1.8	14
36	High sensitivity HPLC method for determination of the allysine concentration in tissue by use of a naphthol derivative. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1064, 7-13.	2.3	14

#	Article	IF	CITATIONS
37	Theoretical studies on the binding of rhenium(I) complexes to inducible nitric oxide synthase. Journal of Molecular Graphics and Modelling, 2013, 45, 13-25.	2.4	13
38	A Fluorogenic Probe for Cell Surface Phosphatidylserine Using an Intramolecular Indicator Displacement Sensing Mechanism. Angewandte Chemie, 2019, 131, 3119-3123.	2.0	10
39	A pyrazolylamineâ€phosphonate monoester chelator for the <i>fac</i> â€{M(CO) ₃ } ⁺ core (M = Re, ^{99m} Tc): synthesis, coordination properties and biological assessment. Journal of Labelled Compounds and Radiopharmaceuticals. 2007. 50. 1176-1184.	1.0	8
40	Re(I) and Tc(I) Complexes for Targeting Nitric Oxide Synthase: Influence of the Chelator in the Affinity for the Enzyme. Chemical Biology and Drug Design, 2015, 86, 1072-1086.	3.2	8
41	Radicalâ€Mediated Thiolâ€Ene Strategy: Photoactivation of Thiolâ€Containing Drugs in Cancer Cells. Angewandte Chemie, 2018, 130, 16058-16061.	2.0	7
42	A Minimal, Unstrained Sâ€Allyl Handle for Preâ€Targeting Diels–Alder Bioorthogonal Labeling in Live Cells. Angewandte Chemie, 2016, 128, 14903-14907.	2.0	6
43	Technetium-99m complexes of <scp>l</scp> -arginine derivatives for targeting amino acid transporters. Dalton Transactions, 2017, 46, 14537-14547.	3.3	5
44	Arylethynyltrifluoroborate Dienophiles for on Demand Activation of IEDDA Reactions. Bioconjugate Chemistry, 2021, 32, 1812-1822.	3.6	3
45	A ^{99m} Tc(CO) ₃ ″abeled benzylguanidine with persistent heart uptake. Journal of Labelled Compounds and Radiopharmaceuticals, 2014, 57, 358-364.	1.0	2
46	Targeting of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Protein with a Technetiumâ€99m Imaging Probe. ChemMedChem, 2018, 13, 1469-1478.	3.2	2