Emily Ho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6074398/publications.pdf

Version: 2024-02-01

109	7,405	46	84
papers	citations	h-index	g-index
113 all docs	113 docs citations	113 times ranked	8219 citing authors

#	Article	IF	CITATIONS
1	Multi-targeted prevention of cancer by sulforaphane. Cancer Letters, 2008, 269, 291-304.	7.2	457
2	Zinc deficiency, DNA damage and cancer risk. Journal of Nutritional Biochemistry, 2004, 15, 572-578.	4.2	418
3	Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFÂB, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16770-16775.	7.1	359
4	Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc min mice. FASEB Journal, 2006, 20, 506-508.	0.5	327
5	Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3 prostate epithelial cells. Carcinogenesis, 2006, 27, 811-819.	2.8	275
6	Dietary histone deacetylase inhibitors: From cells to mice to man. Seminars in Cancer Biology, 2007, 17, 363-369.	9.6	260
7	Zinc Deficiency Induces Oxidative DNA Damage and Increases P53 Expression in Human Lung Fibroblasts. Journal of Nutrition, 2003, 133, 2543-2548.	2.9	210
8	Dietary Sulforaphane, a Histone Deacetylase Inhibitor for Cancer Prevention. Journal of Nutrition, 2009, 139, 2393-2396.	2.9	197
9	Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Experimental Biology and Medicine, 2007, 232, 227-34.	2.4	183
10	Zinc Deficiency Affects DNA Damage, Oxidative Stress, Antioxidant Defenses, and DNA Repair in Rats. Journal of Nutrition, 2009, 139, 1626-1631.	2.9	181
11	Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: Studies with sulforaphane and garlic organosulfur compounds. Environmental and Molecular Mutagenesis, 2009, 50, 213-221.	2.2	180
12	Dietary HDAC inhibitors: time to rethink weak ligands in cancer chemoprevention?. Carcinogenesis, 2006, 27, 344-349.	2.8	179
13	Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells. Clinical Epigenetics, 2011, 3, 4.	4.1	177
14	Xanthohumol, a prenylflavonoid derived from hops induces apoptosis and inhibits NF-kappaB activation in prostate epithelial cells. Cancer Letters, 2007, 246, 201-209.	7.2	167
15	Bioavailability and inter-conversion of sulforaphane and erucin in human subjects consuming broccoli sprouts or broccoli supplement in a cross-over study design. Pharmacological Research, 2011, 64, 456-463.	7.1	159
16	Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells. Molecular Nutrition and Food Research, 2011, 55, 999-1009.	3.3	149
17	Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation. Molecular Nutrition and Food Research, 2015, 59, 991-999.	3.3	146
18	Metabolism and Tissue Distribution of Sulforaphane in Nrf2 Knockout and Wild-Type Mice. Pharmaceutical Research, 2011, 28, 3171-3179.	3.5	130

#	Article	IF	CITATIONS
19	Promoter de-methylation of cyclin D2 by sulforaphane in prostate cancer cells. Clinical Epigenetics, 2011, 3, 3.	4.1	120
20	Histone deacetylase turnover and recovery in sulforaphane-treated colon cancer cells: competing actions of 14-3-3 and Pin1 in HDAC3/SMRT corepressor complex dissociation/reassembly. Molecular Cancer, 2011, 10, 68.	19.2	113
21	Dietary Zinc Supplementation Inhibits NFκB Activation and Protects Against Chemically Induced Diabetes in CD1 Mice. Experimental Biology and Medicine, 2001, 226, 103-111.	2.4	112
22	Absorption and chemopreventive targets of sulforaphane in humans following consumption of broccoli sprouts or a myrosinase-treated broccoli sprout extract. Molecular Nutrition and Food Research, 2015, 59, 424-433.	3.3	104
23	HDAC turnover, CtIP acetylation and dysregulated DNA damage signaling in colon cancer cells treated with sulforaphane and related dietary isothiocyanates. Epigenetics, 2013, 8, 612-623.	2.7	103
24	Dietary Factors and Epigenetic Regulation for Prostate Cancer Prevention. Advances in Nutrition, 2011, 2, 497-510.	6.4	102
25	MicroRNAs, diet, and cancer: New mechanistic insights on the epigenetic actions of phytochemicals. Molecular Carcinogenesis, 2012, 51, 213-230.	2.7	101
26	Effects of Sulforaphane and 3,3′-Diindolylmethane on Genome-Wide Promoter Methylation in Normal Prostate Epithelial Cells and Prostate Cancer Cells. PLoS ONE, 2014, 9, e86787.	2.5	91
27	Dietary agents as histone deacetylase inhibitors. Molecular Carcinogenesis, 2006, 45, 443-446.	2.7	90
28	Aging and serum MCP-1 are associated with gut microbiome composition in a murine model. PeerJ, 2016, 4, e1854.	2.0	89
29	Increased inflammatory response in aged mice is associated with age-related zinc deficiency and zinc transporter dysregulation. Journal of Nutritional Biochemistry, 2013, 24, 353-359.	4.2	88
30	Zinc and its role in ageâ€related inflammation and immune dysfunction. Molecular Nutrition and Food Research, 2012, 56, 77-87.	3.3	85
31	Sulforaphane Bioavailability and Chemopreventive Activity in Women Scheduled for Breast Biopsy. Cancer Prevention Research, 2015, 8, 1184-1191.	1.5	83
32	Chemopreventive properties of $3,3\hat{a}\in^2$ -diindolylmethane in breast cancer: evidence from experimental and human studies. Nutrition Reviews, 2016, 74, 432-443.	5.8	83
33	Long noncoding RNAs and sulforaphane: a target for chemoprevention and suppression of prostate cancer. Journal of Nutritional Biochemistry, 2017, 42, 72-83.	4.2	81
34	Zinc Deficiency Alters DNA Damage Response Genes in Normal Human Prostate Epithelial Cells3. Journal of Nutrition, 2008, 138, 667-673.	2.9	79
35	3,3′-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells. Toxicology and Applied Pharmacology, 2012, 263, 345-351.	2.8	73
36	Dietary zinc restriction and repletion affects DNA integrity in healthy men. American Journal of Clinical Nutrition, 2009, 90, 321-328.	4.7	70

#	Article	IF	CITATIONS
37	Metabolism as a key to histone deacetylase inhibition. Critical Reviews in Biochemistry and Molecular Biology, 2011, 46, 181-199.	5.2	68
38	Comparison of Isothiocyanate Metabolite Levels and Histone Deacetylase Activity in Human Subjects Consuming Broccoli Sprouts or Broccoli Supplement. Journal of Agricultural and Food Chemistry, 2011, 59, 10955-10963.	5.2	66
39	Dietary agents as histone deacetylase inhibitors: sulforaphane and structurally related isothiocyanates. Nutrition Reviews, 2008, 66, S36-S38.	5.8	65
40	Dietary soy and tea mitigate chronic inflammation and prostate cancer via NFκB pathway in the Noble rat model. Journal of Nutritional Biochemistry, 2011, 22, 502-510.	4.2	60
41	Phytochemicals from Cruciferous Vegetables, Epigenetics, and Prostate Cancer Prevention. AAPS Journal, 2013, 15, 951-961.	4.4	59
42	Zinc and prostatic cancer. Current Opinion in Clinical Nutrition and Metabolic Care, 2009, 12, 640-645.	2.5	57
43	Nrf2 status affects tumor growth, HDAC3 gene promoter associations, and the response to sulforaphane in the colon. Clinical Epigenetics, 2015, 7, 102.	4.1	54
44	Induction of proinflammatory response in prostate cancer epithelial cells by activated macrophages. Cancer Letters, 2009, 276, 38-46.	7.2	53
45	Histone and Non-Histone Targets of Dietary Deacetylase Inhibitors. Current Topics in Medicinal Chemistry, 2015, 16, 714-731.	2.1	53
46	Epigenetic Regulation by Sulforaphane: Opportunities for Breast and Prostate Cancer Chemoprevention. Current Pharmacology Reports, 2015, 1, 102-111.	3.0	50
47	Reliability and Validity of Food Frequency Questionnaire and Nutrient Biomarkers in Elders With and Without Mild Cognitive Impairment. Alzheimer Disease and Associated Disorders, 2011, 25, 49-57.	1.3	43
48	Zinc Supplementation Increases Zinc Status and Thymopoiesis in Aged Mice ,. Journal of Nutrition, 2009, 139, 1393-1397.	2.9	42
49	Metal exposure and oxidative stress markers in pregnant Navajo Birth Cohort Study participants. Free Radical Biology and Medicine, 2018, 124, 484-492.	2.9	42
50	Marginal zinc deficiency increases oxidative DNA damage in the prostate after chronic exercise. Free Radical Biology and Medicine, 2010, 48, 82-88.	2.9	41
51	Sulforaphane Bioavailability and Chemopreventive Activity in Men Presenting for Biopsy of the Prostate Gland: A Randomized Controlled Trial. Nutrition and Cancer, 2020, 72, 74-87.	2.0	41
52	Dietary zinc restriction in rats alters antioxidant status and increases plasma F2 isoprostanes. Journal of Nutritional Biochemistry, 2007, 18, 509-518.	4.2	39
53	Sulforaphane modulates telomerase activity via epigenetic regulation in prostate cancer cell lines. Biochemistry and Cell Biology, 2016, 94, 71-81.	2.0	34
54	Marginal Zinc Deficiency and Environmentally Relevant Concentrations of Arsenic Elicit Combined Effects on the Gut Microbiome. MSphere, 2018, 3, .	2.9	34

#	Article	IF	CITATIONS
55	Broccoli Sprouts Delay Prostate Cancer Formation and Decrease Prostate Cancer Severity with a Concurrent Decrease in HDAC3 Protein Expression in Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) Mice. Current Developments in Nutrition, 2018, 2, nzy002.	0.3	32
56	Combinatorial effects of zinc deficiency and arsenic exposure on zebrafish (Danio rerio) development. PLoS ONE, 2017, 12, e0183831.	2.5	31
57	A functional pseudogene, <i>NMRAL2P</i> , is regulated by Nrf2 and serves as a coactivator of <i>NQO1</i> in sulforaphaneâ€treated colon cancer cells. Molecular Nutrition and Food Research, 2017, 61, 1600769.	3.3	29
58	Zinc Deficiency and Arsenic Exposure Can Act Both Independently or Cooperatively to Affect Zinc Status, Oxidative Stress, and Inflammatory Response. Biological Trace Element Research, 2019, 191, 370-381.	3.5	28
59	Acetylation of CCAR2 Establishes a BET/BRD9 Acetyl Switch in Response to Combined Deacetylase and Bromodomain Inhibition. Cancer Research, 2019, 79, 918-927.	0.9	28
60	Associations between cruciferous vegetable intake and selected biomarkers among women scheduled for breast biopsies. Public Health Nutrition, 2016, 19, 1288-1295.	2.2	27
61	Adverse effects of parental zinc deficiency on metal homeostasis and embryonic development in a zebrafish model. Journal of Nutritional Biochemistry, 2017, 43, 78-87.	4.2	27
62	Transcriptome analysis reveals a dynamic and differential transcriptional response to sulforaphane in normal and prostate cancer cells and suggests a role for Sp1 in chemoprevention. Molecular Nutrition and Food Research, 2014, 58, 2001-2013.	3.3	26
63	Untargeted Metabolomic Screen Reveals Changes in Human Plasma Metabolite Profiles Following Consumption of Fresh Broccoli Sprouts. Molecular Nutrition and Food Research, 2018, 62, e1700665.	3.3	26
64	Effects of zinc status on age-related T cell dysfunction and chronic inflammation. BioMetals, 2021, 34, 291-301.	4.1	25
65	Zinc supplementation reduced DNA breaks in Ethiopian women. Nutrition Research, 2015, 35, 49-55.	2.9	24
66	Zinc transporter expression in zebrafish (Danio rerio) during development. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2012, 155, 26-32.	2.6	23
67	Dietary Manipulation of Histone Structure and Function. World Review of Nutrition and Dietetics, 2010, 101, 95-102.	0.3	22
68	Reciprocal regulation of BMF and BIRC5 (Survivin) linked to Eomes overexpression in colorectal cancer. Cancer Letters, 2016, 381, 341-348.	7.2	22
69	Differential modulation of dibenzo[def,p]chrysene transplacental carcinogenesis: Maternal diets rich in indole-3-carbinol versus sulforaphane. Toxicology and Applied Pharmacology, 2013, 270, 60-69.	2.8	21
70	Zinc transporter expression profiles in the rat prostate following alterations in dietary zinc. BioMetals, 2010, 23, 51-58.	4.1	20
71	Effects of ibuprofen on cognition and NMDA receptor subunit expression across aging. Neuroscience, 2017, 344, 276-292.	2.3	18
72	Overview to Symposium "Nutrients and Epigenetic Regulation of Gene Expression―,. Journal of Nutrition, 2009, 139, 2387-2388.	2.9	16

#	Article	IF	Citations
73	Analysis of autophagic flux in response to sulforaphane in metastatic prostate cancer cells. Molecular Nutrition and Food Research, 2015, 59, 1954-1961.	3.3	16
74	The phytochemical 3,3′-diindolylmethane decreases expression of AR-controlled DNA damage repair genes through repressive chromatin modifications and is associated with DNA damage in prostate cancer cells. Journal of Nutritional Biochemistry, 2017, 47, 113-119.	4.2	16
75	Impact of zinc on DNA integrity and age-related inflammation. Free Radical Biology and Medicine, 2022, 178, 391-397.	2.9	16
76	3,3′-Diindolylmethane Exhibits Significant Metabolism after Oral Dosing in Humans. Drug Metabolism and Disposition, 2021, 49, 694-705.	3.3	15
77	Zinc. Advances in Nutrition, 2015, 6, 224-226.	6.4	14
78	Isothiocyanates for Human Health. Molecular Nutrition and Food Research, 2018, 62, e1870079.	3.3	13
79	Sulforaphane absorption and histone deacetylase activity following single dosing of broccoli sprout supplement in normal dogs. Veterinary Medicine and Science, 2018, 4, 357-363.	1.6	12
80	Composition of the Gut Microbiome Influences Production of Sulforaphane-Nitrile and Iberin-Nitrile from Glucosinolates in Broccoli Sprouts. Nutrients, 2021, 13, 3013.	4.1	12
81	Metabolic Fate of Dietary Glucosinolates and Their Metabolites: A Role for the Microbiome. Frontiers in Nutrition, 2021, 8, 748433.	3.7	12
82	Phytase supplementation increases bone mineral density, lean body mass and voluntary physical activity in rats fed a low-zinc dietâ ⁺ t. Journal of Nutritional Biochemistry, 2010, 21, 653-658.	4.2	11
83	Dietary Manipulation of Histone Structure and Function. Journal of Nutrigenetics and Nutrigenomics, 2010, 3, 231-238.	1.3	11
84	Zinc deficiency alters the susceptibility of pancreatic beta cells (INS-1) to arsenic exposure. BioMetals, 2019, 32, 845-859.	4.1	9
85	Perspective: Role of Micronutrients and Omega-3 Long-Chain Polyunsaturated Fatty Acids for Immune Outcomes of Relevance to Infections in Older Adults—A Narrative Review and Call for Action. Advances in Nutrition, 2022, 13, 1415-1430.	6.4	9
86	Modulation of cell growth and apoptosis response in human prostate cancer cells supplemented with tocotrienols. European Journal of Lipid Science and Technology, 2008, 110, 23-31.	1.5	8
87	HDAC6 activity is not required for basal autophagic flux in metastatic prostate cancer cells. Experimental Biology and Medicine, 2016, 241, 1177-1185.	2.4	8
88	Dietary zinc depletion and repletion affects plasma proteins: an analysis of the plasma proteome. BioMetals, 2013, 26, 133-140.	4.1	7
89	30Zn The Role of Zinc As a Metallotherapeutic Agent. , 2005, , 237-257.		4
90	Regulation of hepatic suppressor of cytokine signaling 3 by zinc. Journal of Nutritional Biochemistry, 2013, 24, 1028-1033.	4.2	3

#	Article	IF	CITATIONS
91	Prospective evaluation of the lymph node proteome in dogs with multicentric lymphoma supplemented with sulforaphane. Journal of Veterinary Internal Medicine, 2020, 34, 2036-2047.	1.6	3
92	Randomized Crossover Trial Evaluating Detoxification of Tobacco Carcinogens by Broccoli Seed and Sprout Extract in Current Smokers. Cancers, 2022, 14, 2129.	3.7	3
93	Assessment of global proteome in LNCaP cells by 2D-RP/RP LC–MS/MS following sulforaphane exposure. EuPA Open Proteomics, 2015, 9, 34-40.	2.5	2
94	Exercise training as a modulator of epigenetic events in prostate tumors. Prostate Cancer and Prostatic Diseases, 2021, , .	3.9	2
95	Chemoprevention of Prostate Cancer with Cruciferous Vegetables: Role of Epigenetics. , 2012, , 49-81.		2
96	Sulforaphane inhibits HDAC activity in prostate cancer cells, retards growth of PC3 xenografts, and inhibits HDAC activity in vivo. FASEB Journal, 2006, 20, A150.	0.5	2
97	Broccoli sprouts delay prostate cancer formation and decrease prostate cancer severity with a concurrent decrease in HDAC3 protein expression in TRAMP mice Current Developments in Nutrition, 0, , cdn.117.002378.	0.3	1
98	Metabolism of Sulforaphane in Humans: Supplements vs. Whole Foods. FASEB Journal, 2012, 26, 646.10.	0.5	1
99	The effect of zinc status on DNA damage response in prostate epithelial cells. FASEB Journal, 2006, 20, A625.	0.5	0
100	Protective effects of green tea in suppressing autoimmune response in Type 1 Diabetes. FASEB Journal, 2008, 22, 298.1.	0.5	0
101	Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal and prostate cancer cells. FASEB Journal, 2010, 24, 107.5.	0.5	0
102	Chemopreventative phytochemical $3,3\hat{a}\in \hat{d}$ iindolylmethane inhibits histone deacetylases in prostate cancer cells. FASEB Journal, 2012, 26, 366.6.	0.5	0
103	An RNAâ€seq approach to identify mechanisms by which the phytochemical sulforaphane acts to prevent prostate cancer. FASEB Journal, 2012, 26, 647.10.	0.5	0
104	Sulforaphane bioavailability and bioactivity in humans. FASEB Journal, 2013, 27, 636.26.	0.5	0
105	Genomeâ€wide transcriptome analysis of the effects of sulforphane on normal and prostate cancer cells. FASEB Journal, 2013, 27, 248.2.	0.5	0
106	Sulforaphane alters the expression of long intragenic nonâ€coding RNAs that are dysregulated in prostate cancer cells (644.10). FASEB Journal, 2014, 28, 644.10.	0.5	0
107	Bioavailability and metabolomic targets of sulforaphane in humans (1036.2). FASEB Journal, 2014, 28, 1036.2.	0.5	0
108	Plasma Metabolomic Profiles in Healthy Adults following Consumption of Broccoli Sprouts. FASEB Journal, 2015, 29, 275.1.	0.5	0

#	Article	IF	CITATIONS
109	Plasma Metabolite Profiles in Ethiopian Women following Zinc Supplementation. FASEB Journal, 2016, 30, .	0.5	O