Honggang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6074158/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	One-pot sonochemical preparation of fluorographene and selective tuning of its fluorine coverage. Journal of Materials Chemistry, 2012, 22, 16950.	6.7	193
2	Covalent Functionalization of Fluorinated Graphene and Subsequent Application as Water-based Lubricant Additive. ACS Applied Materials & amp; Interfaces, 2016, 8, 7483-7488.	4.0	135
3	Preparation of a highly effective lubricating oil additive – ceria/graphene composite. RSC Advances, 2014, 4, 47096-47105.	1.7	84
4	A simple and feasible in-situ reduction route for preparation of graphene lubricant films applied to a variety of substrates. Journal of Materials Chemistry, 2012, 22, 8036.	6.7	62
5	Cooperatively exfoliated fluorinated graphene with full-color emission. RSC Advances, 2012, 2, 11681.	1.7	60
6	Photochemical synthesis of fluorinated graphene via a simultaneous fluorination and reduction route. RSC Advances, 2013, 3, 6327.	1.7	54
7	The effect of the interface structure of different surfaceâ€modified nanoâ€SiO ₂ on the mechanical properties of nylon 66 composites. Journal of Applied Polymer Science, 2008, 107, 2007-2014.	1.3	43
8	Ionogel infiltrated paper as flexible electrode for wearable all-paper based sensors in active and passive modes. Nano Energy, 2019, 66, 104161.	8.2	38
9	High efficiency shear exfoliation for producing high-quality, few-layered MoS ₂ nanosheets in a green ethanol/water system. RSC Advances, 2016, 6, 82763-82773.	1.7	35
10	Improvement of piezoresistive sensing behavior of graphene sponge by polyaniline nanoarrays. Journal of Materials Chemistry C, 2019, 7, 7386-7394.	2.7	34
11	Environmentally-adaptive epoxy lubricating coating using self-assembled pMXene@polytetrafluoroethylene core-shell hybrid as novel additive. Carbon, 2021, 184, 12-23.	5.4	29
12	A simple one-step solution deposition process for constructing high-performance amorphous zirconium oxide thin film. RSC Advances, 2014, 4, 6060.	1.7	28
13	Novel additive of PTFE@SiO2 core-shell nanoparticles with superior water lubricating properties. Materials and Design, 2020, 195, 109069.	3.3	27
14	Ultrathin Biocompatible Electrospun Fiber Films for Self-Powered Human Motion Sensor. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 855-868.	2.7	25
15	A novel water-based lubricating additive of GO@PTFE: Superior tribological performances from the synergistic effect. Tribology International, 2022, 169, 107485.	3.0	25
16	The friction and wear properties of clay filled PA66. Polymer Engineering and Science, 2008, 48, 203-209.	1.5	21
17	Stretchable and self-healable electrical sensors with fingertip-like perception capability for surface texture discerning and biosignal monitoring. Journal of Materials Chemistry C, 2019, 7, 9008-9017.	2.7	20
18	Multi-environment adaptability of self-lubricating core/shell PTFE@PR composite: Tribological characteristics and transfer mechanism. Tribology International, 2021, 154, 106718.	3.0	19

HONGGANG WANG

#	Article	IF	CITATIONS
19	Synergistic effects of graphene oxide and paraffin wax on the tribological properties of monomer casting nylon-6 composites. Tribology International, 2021, 154, 106726.	3.0	19
20	Tribological Behaviors of Carbon Fiber Reinforced Epoxy Composites Under PAO Lubrication Conditions. Tribology Letters, 2016, 62, 1.	1.2	18
21	Synergistic effects of titanium dioxide and cellulose on the properties of glassionomer cement. Dental Materials Journal, 2019, 38, 41-51.	0.8	18
22	lonogel-based flexible stress and strain sensors. International Journal of Smart and Nano Materials, 2021, 12, 307-336.	2.0	17
23	Nonâ€Isothermal Crystallization Kinetics of PA6/Attapulgite Composites Prepared by Melt Compounding. Journal of Macromolecular Science - Physics, 2006, 45, 1025-1037.	0.4	15
24	Nonisothermal Crystallization Kinetics of Nylon 66/Montmorillonite Nanocomposites. Journal of Macromolecular Science - Physics, 2007, 46, 1093-1104.	0.4	15
25	Preparation and friction properties of PBT/MMT composites. Polymer Composites, 2009, 30, 619-628.	2.3	15
26	High-efficient and environmental-friendly PTFE@SiO2 core-shell additive with excellent AW/EP properties in PAO6. Tribology International, 2021, 158, 106930.	3.0	15
27	Morphological, Thermal and Mechanical Properties of Compatibilized Nylon 6/ABS Blends. Journal of Macromolecular Science - Physics, 2008, 47, 712-722.	0.4	14
28	Preparation and properties of thermoplastic polyurethane/ultra high molecular weight polyethylene blends. Polymer Composites, 2015, 36, 897-906.	2.3	14
29	Coating of polytetrafluoroethylene/polyacrylate: Coreâ€shelled structure and tribological behaviors. Journal of Applied Polymer Science, 2019, 136, 47774.	1.3	14
30	Core-shell polytetrafluoroethylene @ phenolic resin composites: Structure and tribological behaviors. Tribology International, 2020, 144, 106092.	3.0	14
31	Tribological Behavior of PTFE Composites Filled with PEEK and Nano-ZrO ₂ . Tribology Transactions, 2020, 63, 296-304.	1.1	13
32	Mechanical properties and thermostability of polyimide/mesoporous silica nanocomposite via effectively using the pores. Journal of Applied Polymer Science, 2014, 131, .	1.3	12
33	Preparation and property of ZrO ₂ /GO multi-layered nanocomposite lubricating film. RSC Advances, 2014, 4, 39743.	1.7	10
34	Study on the Morphological and Mechanical Properties of Nylon 6/ABS/Nano-SiO ₂ Composites. Journal of Macromolecular Science - Physics, 2009, 48, 1069-1080.	0.4	9
35	Tribological Behavior of Nano-ZrO2 Reinforced PTFE-PPS Composites. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 527-533.	0.4	7
36	The tribological behaviors of <scp>coreâ€shell <i>n</i>â€octadecane</scp> @ <scp>TiO₂</scp> /epoxy composites. Polymer Composites, 2020, 41, 4872-4884.	2.3	7

HONGGANG WANG

#	Article	IF	CITATIONS
37	A case study of PTFE@SiO2 core-shell solid lubricant. Tribology International, 2021, 160, 107016.	3.0	7
38	Enhanced Antiwear Property of Cu-Sn-Bi Bimetal Composites with TiB ₂ under Different Working Conditions. Tribology Transactions, 2022, 65, 78-87.	1.1	7
39	Preparation, Characterization, and Properties of Polyamide 66/Maleic Anhydride -grafted-polypropylene/Clay Ternary Nanocomposites. Journal of Macromolecular Science - Physics, 2009, 48, 55-67.	0.4	5
40	Compatibilizing effect of ethylene–propylene–diene grafted maleic anhydride terpolymer on the blend of polyamide 66 and thermal liquid crystalline polymer. Polymer Composites, 2006, 27, 608-613.	2.3	4
41	Effect of Organic-Mo on the Wear Behavior of Phenolic Resin Composites. Journal of Macromolecular Science - Physics, 2020, 59, 284-294.	0.4	4
42	Improved tribological performance of epoxy composites containing <scp>core</scp> – <scp>shell PE</scp> wax@ <scp>SiO₂</scp> nanoparticles. Polymer Engineering and Science, 2022, 62, 2863-2877.	1.5	4
43	Tribological Behaviors of Porous 3D Graphene Lubricant Reinforced Monomer Casting Polyamide 6 Composite. Advanced Engineering Materials, 2020, 22, 1901170.	1.6	3
44	Tribological Behaviors of Porous 3D Graphene Lubricant Reinforced Monomer Casting Polyamide 6 Composite. Advanced Engineering Materials, 2020, 22, 2070020.	1.6	2
45	Effect of surrounding polydimethylsiloxane frame and substrate on drying behavior of aqueous alumina suspensions. International Journal of Applied Ceramic Technology, 2018, 15, 1502-1509.	1.1	1
46	Tribological Behaviours of PTFE Composites Filled with PEEK and Nano-ZrO2 Based on Pinon-Flat Reciprocating Friction Model. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 87-98.	0.4	1
47	2D graphene/FeOCl heterojunctions with enhanced tribology performance as a lubricant additive for liquid paraffin. RSC Advances, 2022, 12, 2759-2769.	1.7	1