
Anton A Minnekhanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6073705/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanocomposite parylene-C memristors with embedded Ag nanoparticles for biomedical data processing. Organic Electronics, 2022, 102, 106455.	2.6	14
2	Parylene-based memristive crossbar structures with multilevel resistive switching for neuromorphic computing. Nanotechnology, 2022, 33, 255201.	2.6	13
3	Stability of Quantized Conductance Levels in Memristors with Copper Filaments: Toward Understanding the Mechanisms of Resistive Switching. Physical Review Applied, 2022, 17, .	3.8	5
4	Photoinduced Dynamics of Radicals in N- and Nb-Codoped Titania Nanocrystals with Enhanced Photocatalysis: Experiment and Modeling. Crystal Growth and Design, 2022, 22, 4288-4297.	3.0	4
5	Resistive switching kinetics of parylene-based memristive devices with Cu active electrodes. Journal of Physics: Conference Series, 2021, 1758, 012025.	0.4	2
6	Spiking Neuron Model for Dopamine-Like Learning of Neuromorphic Systems with Memristive Synaptic Weights. Nanobiotechnology Reports, 2021, 16, 253-260.	0.6	2
7	Parylene-based memristive synapses for hardware neural networks capable of dopamine-modulated STDP learning. Journal Physics D: Applied Physics, 2021, 54, 484002.	2.8	11
8	Frequency-Coded Control of the Conductance of Memristors Based on Nanoscale Layers of LiNbO3 and (Co40Fe40B20)x(LiNbO3)100 – x Composite in Trained Spiking Neural Networks. Technical Physics Letters, 2021, 47, 656-660.	0.7	2
9	Silver and Copper Alloys for the Top Electrodes of Memristive Structures Based on Poly-n-Xylylene. Nanobiotechnology Reports, 2021, 16, 777-781.	0.6	1
10	Resistive Switching of Memristors Based on (Co40Fe40B20)x(LiNbO3)100–Âx Nanocomposite with a LiNbO3 Interlayer: Plasticity and Time Characteristics. Journal of Communications Technology and Electronics, 2020, 65, 1198-1203.	0.5	2
11	Conductance Quantization in Memristive Structures Based on Poly-p-Xylylene. Semiconductors, 2020, 54, 1103-1107. Multifilamentary Character of Anticorrelated Capacitive and Resistive Switching in Memristive	0.5	3
12	Structures Based on <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mo< td=""><td></td><td></td></mml:mo<></mml:math>		

#	Article	IF	CITATIONS
19	Nanostructured Microspheres Based on Titanium Nano-Oxide with the Function of Accumulation of a Charge for Prolonged Catalysis. JETP Letters, 2020, 112, 527-531.	1.4	2
20	Parylene Based Memristive Devices with Multilevel Resistive Switching for Neuromorphic Applications. Scientific Reports, 2019, 9, 10800.	3.3	92
21	Dopamine-like STDP modulation in nanocomposite memristors. AIP Advances, 2019, 9, .	1.3	36
22	On the resistive switching mechanism of parylene-based memristive devices. Organic Electronics, 2019, 74, 89-95.	2.6	44
23	Formation of a Memristive Array of Crossbar-Structures Based on (Co40Fe40B20)x(LiNbO3)100 Nanocomposite. Journal of Communications Technology and Electronics, 2019, 64, 1135-1139.	0.5	5
24	EPR Study of Photoexcited Charge Carrier Behavior in TiO2/MoO3 and TiO2/MoO3:V2O5 Photocatalysts. Catalysis Letters, 2019, 149, 2256-2267.	2.6	13
25	Poly-para-xylylene-Based Memristors on Flexible Substrates. Technical Physics Letters, 2019, 45, 1103-1106.	0.7	11
26	SYNAPTIC PLASTICITY OF MEMRISTIVE STRUCTURES BASED ON POLY-P-XYLYLENE. Nanotechnologies in Russia, 2019, 14, 1-6.	0.7	6
27	Determination of the Energy Levels of Paramagnetic Centers in the Band Gap of Nanostructured Oxide Semiconductors Using EPR Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 10248-10254.	3.1	24
28	Investigation of proton spin relaxation in water with dispersed silicon nanoparticles for potential magnetic resonance imaging applications. Journal of Applied Physics, 2018, 123, .	2.5	11
29	Unveiling point defects in titania mesocrystals: a combined EPR and XPS study. New Journal of Chemistry, 2018, 42, 15184-15189.	2.8	9
30	Features of Charge Accumulation Processes in Nanoheterostructures Based on Titanium and Molybdenum Oxides. JETP Letters, 2018, 107, 264-268.	1.4	6
31	Influence of Defects on Photoconductivity and Photocatalytic Activity of Nitrogen-Doped Titania. Applied Magnetic Resonance, 2017, 48, 335-345.	1.2	8
32	The influence of the formation and storage conditions of silicon nanoparticles obtained by laser-induced pyrolysis of monosilane on the nature and properties of defects. Technical Physics Letters, 2017, 43, 424-427.	0.7	4
33	Shedding Light on Aging of N-Doped Titania Photocatalysts. Journal of Physical Chemistry C, 2015, 119, 18663-18670.	3.1	19
34	Synthesis of composite Si-B nanoparticles by the laser-induced pyrolysis method. Laser Physics Letters, 2014, 11, 126002.	1.4	4
35	Facile preparation of nitrogen-doped nanostructured titania microspheres by a new method of Thermally Assisted Reactions in Aqueous Sprays. Journal of Materials Chemistry A, 2014, 2, 3102.	10.3	24
36	Paramagnetic properties of carbon-doped titanium dioxide. Nanoscale Research Letters, 2012, 7, 333.	5.7	23