
Yu Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6072994/publications.pdf Version: 2024-02-01

Υμ Ζησμ

#	Article	IF	CITATIONS
1	Discovery of Novel Pyrrolo[2,3- <i>d</i>]pyrimidine-based Derivatives as Potent JAK/HDAC Dual Inhibitors for the Treatment of Refractory Solid Tumors. Journal of Medicinal Chemistry, 2022, 65, 1243-1264.	6.4	42
2	Difference in Gastrointestinal Risk Associated with Use of GLP-1 Receptor Agonists: A Real-World Pharmacovigilance Study. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2022, Volume 15, 155-163.	2.4	9
3	Acute Kidney Injury and Drugs Prescribed for COVID-19 in Diabetes Patients: A Real-World Disproportionality Analysis. Frontiers in Pharmacology, 2022, 13, 833679.	3.5	7
4	Hypoglycemia associated with directâ€acting antiâ€hepatitis C virus drugs: An epidemiologic surveillance study of the FDA adverse event reporting system (FAERS). Clinical Endocrinology, 2022, 96, 690-697.	2.4	4
5	Identification of Potential RBPJ-Specific Inhibitors for Blocking Notch Signaling in Breast Cancer Using a Drug Repurposing Strategy. Pharmaceuticals, 2022, 15, 556.	3.8	5
6	A metal-free method for the facile synthesis of indanones <i>via</i> the intramolecular hydroacylation of 2-vinylbenzaldehyde. Green Chemistry, 2021, 23, 1036-1040.	9.0	14
7	A Rh(<scp>iii</scp>)-catalyzed C–H activation/regiospecific annulation cascade of benzoic acids with propargyl acetates to unusual 3-alkylidene-isochromanones. Organic Chemistry Frontiers, 2021, 8, 3876-3882.	4.5	11
8	Metabolomic analysis to elucidate the change of the n-3 polyunsaturated fatty acids in senescent osteoblasts. Bioscience, Biotechnology and Biochemistry, 2021, 85, 611-620.	1.3	4
9	Kinetics-Driven Drug Design Strategy for Next-Generation Acetylcholinesterase Inhibitors to Clinical Candidate. Journal of Medicinal Chemistry, 2021, 64, 1844-1855.	6.4	32
10	Recurrent non-severe hypoglycemia aggravates cognitive decline in diabetes and induces mitochondrial dysfunction in cultured astrocytes. Molecular and Cellular Endocrinology, 2021, 526, 111192.	3.2	14
11	Rh(III)-Catalyzed [5 + 1] Annulation of Indole-enaminones with Diazo Compounds To Form Highly Functionalized Carbazoles. Organic Letters, 2021, 23, 4406-4410.	4.6	38
12	Rhodiumâ€Catalyzed Câ^'H Activation/Annulation Cascade of Aryl Oximes and Propargyl Alcohols to Isoquinoline <i>N</i> â€Oxides. Advanced Synthesis and Catalysis, 2021, 363, 3305-3310.	4.3	14
13	GLP-1 improves the neuronal supportive ability of astrocytes in Alzheimer's disease by regulating mitochondrial dysfunction via the cAMP/PKA pathway. Biochemical Pharmacology, 2021, 188, 114578.	4.4	26
14	Catalytic Systemâ€Controlled Divergent Reaction Strategies for the Construction of Diversified Spiropyrazolone Skeletons from Pyrazolidinones and Diazopyrazolones. Angewandte Chemie - International Edition, 2021, 60, 21327-21333.	13.8	28
15	Catalytic Systemâ€Controlled Divergent Reaction Strategies for the Construction of Diversified Spiropyrazolone Skeletons from Pyrazolidinones and Diazopyrazolones. Angewandte Chemie, 2021, 133, 21497-21503.	2.0	0
16	Sulfoximines Assisted Rh(III)-Catalyzed C–H Activation/Annulation Cascade to Synthesize Highly Fused Indeno-1,2-benzothiazines. Journal of Organic Chemistry, 2021, 86, 15217-15227.	3.2	9
17	I ₂ -induced cascade cyclization and dearomatization of indoles for the highly efficient synthesis of iodinated and vinylic spiroindolenines. Green Chemistry, 2021, 23, 9165-9171.	9.0	6
18	Severe hypoglycemia exacerbates myocardial dysfunction and metabolic remodeling in diabetic mice. Molecular and Cellular Endocrinology, 2020, 503, 110692.	3.2	8

Үи Zнои

#	Article	IF	CITATIONS
19	A removable directing group-assisted Rh(<scp>iii</scp>)-catalyzed direct C–H bond activation/annulation cascade to synthesize highly fused isoquinolines. Organic Chemistry Frontiers, 2020, 7, 3186-3192.	4.5	21
20	Rh(III)-Catalyzed Dual C–H Functionalization/Cyclization Cascade by a Removable Directing Group: A Method for Synthesis of Polycyclic Fused Pyrano[<i>de</i>]Isochromenes. Journal of Organic Chemistry, 2020, 85, 12097-12107.	3.2	23
21	The scientific elucidation of daodi medicinal materials. Chinese Medicine, 2020, 15, 86.	4.0	18
22	Ruthenium-Catalyzed C–H Activations for the Synthesis of Indole Derivatives. Catalysts, 2020, 10, 1253.	3.5	17
23	Synthesis of Highly Fused Pyrano[2,3- <i>b</i>]pyridines via Rh(III)-Catalyzed C–H Activation and Intramolecular Cascade Annulation under Room Temperature. Journal of Organic Chemistry, 2020, 85, 6281-6294.	3.2	19
24	The 3′ Untranslated Region Protects the Heart from Angiotensin II-Induced Cardiac Dysfunction via AGGF1 Expression. Molecular Therapy, 2020, 28, 1119-1132.	8.2	10
25	Rhodium(III)-Catalyzed Redox-Neutral [3+3] Annulation of N-nitrosoanilines with Cyclopropenones: A Traceless Approach to Quinolin-4(1H)-One Scaffolds. Molecules, 2020, 25, 268.	3.8	9
26	Discovery and Optimization of Non-bile Acid FXR Agonists as Preclinical Candidates for the Treatment of Nonalcoholic Steatohepatitis. Journal of Medicinal Chemistry, 2020, 63, 12748-12772.	6.4	11
27	Exendin-4 enhances proliferation of senescent osteoblasts through activation of the IGF-1/IGF-1R signaling pathway. Biochemical and Biophysical Research Communications, 2019, 516, 300-306.	2.1	18
28	Rh(III)-Catalyzed C–H Bond Activation for the Construction of Heterocycles with sp3-Carbon Centers. Catalysts, 2019, 9, 823.	3.5	27
29	Exenatide alleviates mitochondrial dysfunction and cognitive impairment in the 5×FAD mouse model of Alzheimer's disease. Behavioural Brain Research, 2019, 370, 111932.	2.2	43
30	Ruthenium(<scp>ii</scp>)-catalyzed selective C–H bond activation of imidamides and coupling with sulfoxonium ylides: an efficient approach for the synthesis of highly functional 3-ketoindoles. Organic Chemistry Frontiers, 2019, 6, 1183-1188.	4.5	75
31	The 100 most-cited articles on prenatal diagnosis. Medicine (United States), 2019, 98, e17236.	1.0	9
32	Highly selective C–H bond activation of <i>N</i> -arylbenzimidamide and divergent couplings with diazophosphonate compounds: a catalyst-controlled selective synthetic strategy for 3-phosphorylindoles and 4-phosphorylisoquinolines. Organic Chemistry Frontiers, 2019, 6, 393-398.	4.5	34
33	Gold atalyzed Rapid Construction of Nitrogenâ€containing Heterocyclic Compound Library with Scaffold Diversity and Molecular Complexity. Advanced Synthesis and Catalysis, 2019, 361, 1419-1440.	4.3	34
34	Rhodium(III) atalyzed Câ€H Activation of Benzoylacetonitriles and Cyclization with Sulfoxonium Ylides to Naphthols. Advanced Synthesis and Catalysis, 2018, 360, 2546-2551.	4.3	81
35	Rh(III)-Catalyzed C–H Activation of Benzoylacetonitriles and Tandem Cyclization with Diazo Compounds to Substituted Benzo[<i>de</i>]chromenes. Organic Letters, 2018, 20, 1720-1724.	4.6	55
36	<i>N</i> -Heterocyclic Carbene Catalyzed Enantioselective [3 + 2] Dearomatizing Annulation of Saturated Carboxylic Esters with <i>N</i> -Iminoisoquinolinium Ylides. Journal of Organic Chemistry, 2018, 83, 3879-3888.	3.2	20

Үи Zнои

#	Article	IF	CITATIONS
37	Crystal structure of the human 5-HT1B serotonin receptor bound to an inverse agonist. Cell Discovery, 2018, 4, 12.	6.7	63
38	Direct Synthesis of 3-Acylindoles through Rhodium(III)-Catalyzed Annulation of <i>N</i> -Phenylamidines with α-Cl Ketones. Organic Letters, 2018, 20, 7645-7649.	4.6	51
39	A Method for Synthesis of 3-Hydroxy-1-indanones via Cu-Catalyzed Intramolecular Annulation Reactions. Journal of Organic Chemistry, 2018, 83, 13356-13362.	3.2	30
40	Rhodium(III)-Catalyzed C–H Activation of α-Iminonitriles or α-Imino Esters and Cyclization with Acrylates to 2 <i>H</i> -Isoindoles. Journal of Organic Chemistry, 2018, 83, 11736-11746.	3.2	17
41	Propargyl Alcohols as One-Carbon Synthons: Redox-Neutral Rhodium(III)-Catalyzed C–H Bond Activation for the Synthesis of Isoindolinones Bearing a Quaternary Carbon. Organic Letters, 2017, 19, 1294-1297.	4.6	106
42	Ruthenium-Catalyzed Redox-Neutral [4 + 1] Annulation of Benzamides and Propargyl Alcohols via C–H Bond Activation. ACS Catalysis, 2017, 7, 2494-2499.	11.2	118
43	Catalytic and catalyst-free diboration of alkynes. Organic Chemistry Frontiers, 2017, 4, 2235-2255.	4.5	56
44	Rh(III)-Catalyzed C–H Cyclization of Arylnitrones with Diazo Compounds: Access to 3-Carboxylate Substituted <i>N</i> -Hydroxyindoles. Journal of Organic Chemistry, 2017, 82, 8984-8994.	3.2	42
45	Recent Advances in the Synthesis of Heterocycles via Gold-catalyzed Cascade Reactions: A Review. Current Organic Chemistry, 2017, 21, .	1.6	19
46	Construction of highly enantioenriched spirocyclopentaneoxindoles containing four consecutive stereocenters via thiourea-catalyzed asymmetric Michael–Henry cascade reactions. Beilstein Journal of Organic Chemistry, 2017, 13, 1342-1349.	2.2	8
47	Progress of Organic Reactions Catalyzed by <i>N</i> -Heterocyclic Carbenes. Chinese Journal of Organic Chemistry, 2017, 37, 2608.	1.3	8
48	Synthesis and Anti-HIV-1 Activity Evaluation for Novel 3a,6a-Dihydro-1H-pyrrolo[3,4-c]pyrazole-4,6-dione Derivatives. Molecules, 2016, 21, 1198.	3.8	22
49	Enantioselective Assembly of Spirolactones through NHC-Catalyzed Remote γ-Carbon Addition of Enals with Isatins. ACS Combinatorial Science, 2016, 18, 220-224.	3.8	24
50	<i>N</i> -Heterocyclic Carbene Catalytic [4 + 2] Cyclization of 3-Alkylenyloxindoles with Enals: γ-Carbon Activation for Enantioselective Assembly of Spirocarbocyclic Oxindoles. Journal of Organic Chemistry, 2016, 81, 8888-8899.	3.2	31
51	Design, Synthesis, and Biological Evaluation of Novel Tetrahydroprotoberberine Derivatives (THPBs) as Selective α _{1A} -Adrenoceptor Antagonists. Journal of Medicinal Chemistry, 2016, 59, 9489-9502.	6.4	23
52	Identification and biochemical characterization of DC07090 as a novel potent small molecule inhibitor against human enterovirus 71 3C protease by structure-based virtual screening. European Journal of Medicinal Chemistry, 2016, 124, 981-991.	5.5	25
53	Enantioselective Nâ€Heterocyclic Carbeneâ€Catalyzed [3+3] Annulation of α,βâ€Unsaturated Esters with Methyl Ketoimine. Advanced Synthesis and Catalysis, 2016, 358, 1864-1869.	4.3	23
54	Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II–III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. Chemical Reviews, 2016, 116, 422-518.	47.7	2,030

Үи Zнои

#	Article	IF	CITATIONS
55	A simple, accurate, time-saving and green method for the determination of 15 sulfonamides and metabolites in serum samples by ultra-high performance supercritical fluid chromatography. Journal of Chromatography A, 2016, 1432, 132-139.	3.7	31
56	Identification and Functional Analysis of a Novel Tryptophyllin Peptide from the Skin of the Red-eye Leaf Frog, <i>Agalychnis callidryas</i> . International Journal of Biological Sciences, 2015, 11, 209-219.	6.4	9
57	γ-Carbon Activation through N-Heterocyclic Carbene/BrÃnsted Acids Cooperative Catalysis: A Highly Enantioselective Route to I´-Lactams. Organic Letters, 2015, 17, 3850-3853.	4.6	36
58	A Mannich/cyclization cascade process for the asymmetric synthesis of spirocyclic thioimidazolidineoxindoles. Chemical Communications, 2014, 50, 14771-14774.	4.1	55
59	Asymmetric Michael Addition of N-tert-Butanesulfinyl Imidate with α,β-Unsaturated Diesters: Scope and Application to the Synthesis of Indanone Derivatives. Organic Letters, 2013, 15, 1508-1511.	4.6	39
60	Highly Enantioselective Michael Addition of 2â€Oxindole―3â€carboxylate Esters to Nitroolefins Promoted by <i>Cinchona</i> Alkaloidâ€Thioureaâ€BrÃ,nsted Acid Cocatalysts. Advanced Synthesis and Catalysis, 2012, 354, 2151-2156.	4.3	39
61	Gold-catalyzed tandem reaction in water: an efficient and convenient synthesis of fused polycyclic indoles. Green Chemistry, 2012, 14, 1888.	9.0	53
62	PD-sauvagine: a novel sauvagine/corticotropin releasing factor analogue from the skin secretion of the Mexican giant leaf frog, Pachymedusa dacnicolor. Amino Acids, 2012, 43, 1147-1156.	2.7	9
63	Gold(I)â€Catalyzed Oneâ€Pot Tandem Coupling/Cyclization: An Efficient Synthesis of Pyrroloâ€/Pyrido[2,1â€ <i>b</i>]benzo[<i>d</i>][1,3]oxazin―1â€ones. Advanced Synthesis and Catalysis, 2010, 352, 373-378.	4.3	55
64	Gold(I)â€Catalyzed Cascade for Synthesis of Pyrrolo[1,2â€ <i>a</i> :2′,1′â€ <i>c</i>]″Pyrido[2,1â€ <i>c</i>]pyrrolo[1,2â€ <i>a</i>]quinoxalinones. Adva Synthesis and Catalysis, 2010, 352, 1711-1717.	n ¢æ d	35
65	LC–MS/MS assay of fluoropezil and its two major metabolites in human plasma: an application to pharmacokinetic studies. Bioanalysis, 0, , .	1.5	Ο