
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6072826/publications.pdf Version: 2024-02-01

DAVID I REECH

#	Article	IF	CITATIONS
1	Pharmacology of TRPC Channels and Its Potential in Cardiovascular and Metabolic Medicine. Annual Review of Pharmacology and Toxicology, 2022, 62, 427-446.	9.4	12
2	Endothelial Piezo1 sustains muscle capillary density and contributes to physical activity. Journal of Clinical Investigation, 2022, 132, .	8.2	23
3	Nonselective TRPC channel inhibition and suppression of aminoglycoside-induced premature termination codon readthrough by the small molecule AC1903. Journal of Biological Chemistry, 2022, 298, 101546.	3.4	12
4	An ex vivo perfused ventilated murine lung model suggests lack of acute pulmonary toxicity of the potential novel anticancer agent (â~')-englerin A. Archives of Toxicology, 2022, 96, 1055-1063.	4.2	1
5	Global PIEZO1 Gain-of-Function Mutation Causes Cardiac Hypertrophy and Fibrosis in Mice. Cells, 2022, 11, 1199.	4.1	10
6	ORAI1 Ca2+ Channel as a Therapeutic Target in Pathological Vascular Remodelling. Frontiers in Cell and Developmental Biology, 2021, 9, 653812.	3.7	19
7	Modeling of full-length Piezo1 suggests importance of the proximal N-terminus for dome structure. Biophysical Journal, 2021, 120, 1343-1356.	0.5	23
8	Molecular dynamics simulations of Piezo1 channel opening by increases in membrane tension. Biophysical Journal, 2021, 120, 1510-1521.	0.5	33
9	Endothelial IGFâ€1 receptor mediates crosstalk with the gut wall to regulate microbiota in obesity. EMBO Reports, 2021, 22, e50767.	4.5	7
10	Endothelial Insulin Receptors Promote VEGF-A Signaling via ERK1/2 and Sprouting Angiogenesis. Endocrinology, 2021, 162, .	2.8	20
11	Novel Paracrine Action of Endothelium Enhances Glucose Uptake in Muscle and Fat. Circulation Research, 2021, 129, 720-734.	4.5	7
12	Placental blood flow sensing and regulation in fetal growth restriction. Placenta, 2021, 113, 23-28.	1.5	12
13	Orai1 Channel Inhibition Preserves Left Ventricular Systolic Function and Normal Ca ²⁺ Handling After Pressure Overload. Circulation, 2020, 141, 199-216.	1.6	42
14	Sphingomyelinase Disables Inactivation in Endogenous PIEZO1 Channels. Cell Reports, 2020, 33, 108225.	6.4	47
15	Bridgehead Modifications of Englerin A Reduce TRPC4 Activity and Intravenous Toxicity but not Cell Growth Inhibition. ACS Medicinal Chemistry Letters, 2020, 11, 1711-1716.	2.8	1
16	Advantages of CEMiTool for gene co-expression analysis of RNA-seq data. Computers in Biology and Medicine, 2020, 125, 103975.	7.0	12
17	RNA and the PIEZO force sensor. Cell Research, 2020, 30, 829-830.	12.0	1
18	Human TRPC5 structures reveal interaction of a xanthine-based TRPC1/4/5 inhibitor with a conserved lipid binding site. Communications Biology, 2020, 3, 704.	4.4	36

#	Article	IF	CITATIONS
19	Xanthine-based photoaffinity probes allow assessment of ligand engagement by TRPC5 channels. RSC Chemical Biology, 2020, 1, 436-448.	4.1	9
20	Response by Benitah et al to Letter Regarding Article, "Orai1 Channel Inhibition Preserves Left Ventricular Systolic Function and Normal Ca ²⁺ Handling After Pressure Overload― Circulation, 2020, 141, e839-e840.	1.6	1
21	RBCs prevent rapid PIEZO1 inactivation and expose slow deactivation as a mechanism of dehydrated hereditary stomatocytosis. Blood, 2020, 136, 140-144.	1.4	23
22	Divergent effects of genetic and pharmacological inhibition of Nox2 NADPH oxidase on insulin resistance-related vascular damage. American Journal of Physiology - Cell Physiology, 2020, 319, C64-C74.	4.6	11
23	Piezo1 Inactivation in Chondrocytes Impairs Trabecular Bone Formation. Journal of Bone and Mineral Research, 2020, 36, 369-384.	2.8	55
24	Shear stress activates ADAM10 sheddase to regulate Notch1 via the Piezo1 force sensor in endothelial cells. ELife, 2020, 9, .	6.0	48
25	Potent, selective, and subunitâ€dependent activation of TRPC5 channels by a xanthine derivative. British Journal of Pharmacology, 2019, 176, 3924-3938.	5.4	26
26	Piezo1 channel activation mimics high glucose as a stimulator of insulin release. Scientific Reports, 2019, 9, 16876.	3.3	29
27	Force Sensing by Piezo Channels in Cardiovascular Health and Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2228-2239.	2.4	147
28	Mechanically activated Piezo1 channels of cardiac fibroblasts stimulate p38 mitogen-activated protein kinase activity and interleukin-6 secretion. Journal of Biological Chemistry, 2019, 294, 17395-17408.	3.4	99
29	Rab46 integrates Ca2+ and histamine signaling to regulate selective cargo release from Weibel-Palade bodies. Journal of Cell Biology, 2019, 218, 2232-2246.	5.2	26
30	TRPC5 ion channel permeation promotes weight gain in hypercholesterolaemic mice. Scientific Reports, 2019, 9, 773.	3.3	5
31	Triskelion channels might bring Star Wars to the global problem of hypertension. Cell Calcium, 2019, 77, 77-78.	2.4	1
32	Yoda1 analogue (<scp>D</scp> ooku1) which antagonizes <scp>Y</scp> oda1â€evoked activation of <scp>P</scp> iezo1 and aortic relaxation. British Journal of Pharmacology, 2018, 175, 1744-1759.	5.4	119
33	Identification of an (â^')â€englerin A analogue, which antagonizes (â^')â€englerin A at TRPC1/4/5 channels. British Journal of Pharmacology, 2018, 175, 830-839.	5.4	18
34	Piezo channel mechanisms in health and disease. Journal of Physiology, 2018, 596, 965-967.	2.9	18
35	Endothelial Piezo1 channels as sensors of exercise. Journal of Physiology, 2018, 596, 979-984.	2.9	30
36	TRPC4/TRPC5 channels mediate adverse reaction to the cancer cell cytotoxic agent (-)-Englerin A. Oncotarget, 2018, 9, 29634-29643.	1.8	24

#	Article	IF	CITATIONS
37	Activation of TRPC1 Channel by Metabotropic Glutamate Receptor mGluR5 Modulates Synaptic Plasticity and Spatial Working Memory. Frontiers in Cellular Neuroscience, 2018, 12, 318.	3.7	48
38	Homotypic endothelial nanotubes induced by wheat germ agglutinin and thrombin. Scientific Reports, 2018, 8, 7569.	3.3	8
39	ORAI Channels as Potential Therapeutic Targets in Pulmonary Hypertension. Physiology, 2018, 33, 261-268.	3.1	15
40	Remarkable Progress with Small-Molecule Modulation of TRPC1/4/5 Channels: Implications for Understanding the Channels in Health and Disease. Cells, 2018, 7, 52.	4.1	47
41	Correspondence: Challenging a proposed role for TRPC5 in aortic baroreceptor pressure-sensing. Nature Communications, 2018, 9, 1245.	12.8	11
42	Tonantzitlolone is a nanomolar potency activator of transient receptor potential canonical 1/4/5 channels. British Journal of Pharmacology, 2018, 175, 3361-3368.	5.4	18
43	Physiology and pharmacology Piezo1 channels. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY75-1.	0.0	0
44	Characterization of a Novel TRPC1/4/5 Channel Blocker (Pico145). Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, OR26-1.	0.0	0
45	Picomolar, selective, and subtype-specific small-molecule inhibition of TRPC1/4/5 channels. Journal of Biological Chemistry, 2017, 292, 8158-8173.	3.4	77
46	Selective Enhancement of Insulin Sensitivity in the Endothelium In Vivo Reveals a Novel Proatherosclerotic Signaling Loop. Circulation Research, 2017, 120, 784-798.	4.5	33
47	Endothelial SHIP2 Suppresses Nox2 NADPH Oxidase–Dependent Vascular Oxidative Stress, Endothelial Dysfunction, and Systemic Insulin Resistance. Diabetes, 2017, 66, 2808-2821.	0.6	23
48	Piezo1 channels sense whole body physical activity to reset cardiovascular homeostasis and enhance performance. Nature Communications, 2017, 8, 350.	12.8	197
49	Pico145 - powerful new tool for TRPC1/4/5 channels. Channels, 2017, 11, 362-364.	2.8	24
50	(â^')-Englerin A-evoked Cytotoxicity Is Mediated by Na+ Influx and Counteracted by Na+/K+-ATPase. Journal of Biological Chemistry, 2017, 292, 723-731.	3.4	40
51	Na+ entry through heteromeric TRPC4/C1 channels mediates (â^')Englerin A-induced cytotoxicity in synovial sarcoma cells. Scientific Reports, 2017, 7, 16988.	3.3	33
52	Upregulated WEE1 protects endothelial cells of colorectal cancer liver metastases. Oncotarget, 2017, 8, 42288-42299.	1.8	7
53	Natural and synthetic flavonoid modulation of TRPC5 channels. British Journal of Pharmacology, 2016, 173, 562-574.	5.4	42
54	Transient receptor potential canonical 4 and 5 proteins as targets in cancer therapeutics. European Biophysics Journal, 2016, 45, 611-620.	2.2	37

#	Article	IF	CITATIONS
55	TRPC and Orai Channels in Store-Operated Calcium Entry and Vascular Remodelling. , 2016, , 275-294.		0
56	(â^')â€Englerinâ€A is a Potent and Selective Activator of TRPC4 and TRPC5 Calcium Channels. Angewandte Chemie - International Edition, 2015, 54, 3787-3791.	13.8	161
57	Endothelial Piezo1: Life depends on it. Channels, 2015, 9, 1-2.	2.8	15
58	Expression of a long variant of CRACR2A that belongs to the Rab GTPase protein family in endothelial cells. Biochemical and Biophysical Research Communications, 2015, 456, 398-402.	2.1	15
59	TRPM2-mediated intracellular Zn2+ release triggers pancreatic β-cell death. Biochemical Journal, 2015, 466, 537-546.	3.7	47
60	Orai3 Surface Accumulation and Calcium Entry Evoked by Vascular Endothelial Growth Factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1987-1994.	2.4	27
61	TRPM2 channel deficiency prevents delayed cytosolic Zn2+ accumulation and CA1 pyramidal neuronal death after transient global ischemia. Cell Death and Disease, 2014, 5, e1541-e1541.	6.3	71
62	Restoring Akt1 Activity in Outgrowth Endothelial Cells From South Asian Men Rescues Vascular Reparative Potential. Stem Cells, 2014, 32, 2714-2723.	3.2	18
63	Piezo1 integration of vascular architecture with physiological force. Nature, 2014, 515, 279-282.	27.8	813
64	Arachidonic acid induced calcium signaling at acidic pH (1057.2). FASEB Journal, 2014, 28, 1057.2.	0.5	0
65	Impact of TRPC channels on body weight (1057.9). FASEB Journal, 2014, 28, .	0.5	0
66	Significance of store operated calcium entry in human abdominal aortic aneurysm vascular smooth muscle cells (1057.3). FASEB Journal, 2014, 28, 1057.3.	0.5	0
67	Resistance of storeâ€operated calcium entry to tumour microenvironment conditions and enhanced potency of Synta66 in colorectal adenocarcinoma cells (1057.4). FASEB Journal, 2014, 28, 1057.4.	0.5	0
68	Vascular endothelial growth factor A evokes distinct calcium entry by promoting surface accumulation of Orai3 (1057.5). FASEB Journal, 2014, 28, 1057.5.	0.5	2
69	In pursuit of small molecule chemistry for calciumâ€permeable nonâ€selective TRPC channels – mirage or pot of gold?. British Journal of Pharmacology, 2013, 170, 459-474.	5.4	86
70	Nox2 NADPH Oxidase Has a Critical Role in Insulin Resistance–Related Endothelial Cell Dysfunction. Diabetes, 2013, 62, 2130-2134.	0.6	117
71	Generation of Antibodies That Are Externally Acting Isoform-Specific Inhibitors of Ion Channels. Methods in Molecular Biology, 2013, 998, 245-256.	0.9	5
72	Activation of the Cl ^{â^'} Channel ANO1 by Localized Calcium Signals in Nociceptive Sensory Neurons Requires Coupling with the IP ₃ Receptor. Science Signaling, 2013, 6, ra73.	3.6	168

#	Article	IF	CITATIONS
73	A differential role of macrophage TRPM2 channels in Ca ²⁺ signaling and cell death in early responses to H ₂ O ₂ . American Journal of Physiology - Cell Physiology, 2013, 305, C61-C69.	4.6	52
74	Inhibition of endothelial cell <scp><scp>Ca</scp>²⁺</scp> entry and transient receptor potential channels by <scp>S</scp> igmaâ€1 receptor ligands. British Journal of Pharmacology, 2013, 168, 1445-1455.	5.4	48
75	Characteristics of Transient Receptor Potential Canonical Calcium-Permeable Channels and Their Relevance to Vascular Physiology and Disease. Circulation Journal, 2013, 77, 570-579.	1.6	73
76	Platelet-Derived Growth Factor Maintains Stored Calcium Through a Nonclustering Orai1 Mechanism But Evokes Clustering If the Endoplasmic Reticulum Is Stressed by Store Depletion. Circulation Research, 2012, 111, 66-76.	4.5	11
77	Novel Role of the IGF-1 Receptor in Endothelial Function and Repair. Diabetes, 2012, 61, 2359-2368.	0.6	54
78	Constitutively Active TRPC Channels of Adipocytes Confer a Mechanism for Sensing Dietary Fatty Acids and Regulating Adiponectin. Circulation Research, 2012, 111, 191-200.	4.5	90
79	Hypoxia-inducible Factor-1α (HIF1α) Switches on Transient Receptor Potential Ankyrin Repeat 1 (TRPA1) Gene Expression via a Hypoxia Response Element-like Motif to Modulate Cytokine Release. Journal of Biological Chemistry, 2012, 287, 31962-31972.	3.4	93
80	Orai1 calcium channels in the vasculature. Pflugers Archiv European Journal of Physiology, 2012, 463, 635-647.	2.8	54
81	Integration of transient receptor potential canonical channels with lipids. Acta Physiologica, 2012, 204, 227-237.	3.8	50
82	Pregnenolone sulphate-independent inhibition of TRPM3 channels by progesterone. Cell Calcium, 2012, 51, 1-11.	2.4	72
83	Properties and Therapeutic Potential of Transient Receptor Potential Channels with Putative Roles in Adversity: Focus on TRPC5, TRPM2 and TRPA1. Current Drug Targets, 2011, 12, 724-736.	2.1	47
84	Stereoâ€selective inhibition of transient receptor potential TRPC5 cation channels by neuroactive steroids. British Journal of Pharmacology, 2011, 162, 1509-1520.	5.4	45
85	Nanomolar potency and selectivity of a Ca ²⁺ release-activated Ca ²⁺ channel inhibitor against store-operated Ca ²⁺ entry and migration of vascular smooth muscle cells. British Journal of Pharmacology, 2011, 164, 382-393.	5.4	53
86	GVI phospholipase A2 role in the stimulatory effect of sphingosine-1-phosphate on TRPC5 cationic channels. Cell Calcium, 2011, 50, 343-350.	2.4	19
87	A residue in the TRPM2 channel outer pore is crucial in determining species-dependent sensitivity to extracellular acidic pH. Pflugers Archiv European Journal of Physiology, 2011, 462, 293-302.	2.8	6
88	TRPC1 transcript variants, inefficient nonsense-mediated decay and low up-frameshift-1 in vascular smooth muscle cells. BMC Molecular Biology, 2011, 12, 30.	3.0	6
89	The Insulin-Like Growth Factor-1 Receptor Is a Negative Regulator of Nitric Oxide Bioavailability and Insulin Sensitivity in the Endothelium. Diabetes, 2011, 60, 2169-2178.	0.6	79
90	Orai1 and CRAC Channel Dependence of VEGF-Activated Ca ²⁺ Entry and Endothelial Tube Formation. Circulation Research, 2011, 108, 1190-1198.	4.5	172

#	Article	IF	CITATIONS
91	Rapid and Contrasting Effects of Rosiglitazone on Transient Receptor Potential TRPM3 and TRPC5 Channels. Molecular Pharmacology, 2011, 79, 1023-1030.	2.3	58
92	Zinc Inactivates Melastatin Transient Receptor Potential 2 Channels via the Outer Pore. Journal of Biological Chemistry, 2011, 286, 23789-23798.	3.4	49
93	Potent suppression of vascular smooth muscle cell migration and human neointimal hyperplasia by KV1.3 channel blockers. Cardiovascular Research, 2011, 89, 282-289.	3.8	55
94	TRPC5 Channel Sensitivities to Antioxidants and Hydroxylated Stilbenes. Journal of Biological Chemistry, 2011, 286, 5078-5086.	3.4	32
95	Cell receptor-ligand interaction, signalling, activation and apoptosis: 21. Pregnenolone Sulphate is Similar to Dexamethasone in Supressing the Unfettered Secretion of Hyaluronan: In Vitro Study on Cultured Synovial Fibroblasts from Patients with Longstanding Rheumatoid Arthritis. Rheumatology, 2011. 50. iii50-iii52.	1.9	0
96	Nitric oxide lacks direct effect on TRPC5 channels but suppresses endogenous TRPC5-containing channels in endothelial cells. Pflugers Archiv European Journal of Physiology, 2010, 460, 121-130.	2.8	30
97	TRPM3 channel stimulated by pregnenolone sulphate in synovial fibroblasts and negatively coupled to hyaluronan. BMC Musculoskeletal Disorders, 2010, 11, 111.	1.9	36
98	Cisâ€isomerism and other chemical requirements of steroidal agonists and partial agonists acting at TRPM3 channels. British Journal of Pharmacology, 2010, 161, 430-441.	5.4	47
99	State-dependent Inhibition of TRPM2 Channel by Acidic pH. Journal of Biological Chemistry, 2010, 285, 30411-30418.	3.4	47
100	Pregnenolone Sulphate- and Cholesterol-Regulated TRPM3 Channels Coupled to Vascular Smooth Muscle Secretion and Contraction. Circulation Research, 2010, 106, 1507-1515.	4.5	134
101	Short-Term Stimulation of Calcium-Permeable Transient Receptor Potential Canonical 5–Containing Channels by Oxidized Phospholipids. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1453-1459.	2.4	51
102	TRPM2 channel properties, functions and therapeutic potentials. Expert Opinion on Therapeutic Targets, 2010, 14, 973-988.	3.4	77
103	Stimulation of TRPC5 cationic channels by low micromolar concentrations of lead ions (Pb2+). Biochemical and Biophysical Research Communications, 2010, 393, 50-54.	2.1	26
104	Harmony and Discord in Endothelial Calcium Entry. Circulation Research, 2009, 104, e22-3.	4.5	16
105	Translocon closure to Ca ²⁺ leak in proliferating vascular smooth muscle cells. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H910-H916.	3.2	23
106	Sar1-GTPase-dependent ER exit of KATP channels revealed by a mutation causing congenital hyperinsulinism. Human Molecular Genetics, 2009, 18, 2400-2413.	2.9	33
107	TRPC channel lipid specificity and mechanisms of lipid regulation. Cell Calcium, 2009, 45, 583-588.	2.4	65
108	Robotic multiwell planar patch-clamp for native and primary mammalian cells. Nature Protocols, 2009, 4, 244-255.	12.0	95

#	Article	IF	CITATIONS
109	Functional TRPC5â€containing channels in human saphenous vein endothelial cells. FASEB Journal, 2009, 23, 644.2.	0.5	0
110	TRP channels provide the depolarisation initiating vasomotion and vessel tone in cerebral resistance arteries. FASEB Journal, 2009, 23, 627.7.	0.5	0
111	TRPC channel activation by extracellular thioredoxin. Nature, 2008, 451, 69-72.	27.8	260
112	Production of a specific extracellular inhibitor of TRPM3 channels. British Journal of Pharmacology, 2008, 155, 567-573.	5.4	44
113	Modulation of TRPC5 cation channels by halothane, chloroform and propofol. British Journal of Pharmacology, 2008, 153, 1505-1512.	5.4	27
114	Identification of Pore Residues Engaged in Determining Divalent Cationic Permeation in Transient Receptor Potential Melastatin Subtype Channel 2. Journal of Biological Chemistry, 2008, 283, 27426-27432.	3.4	60
115	Interactions, Functions, and Independence of Plasma Membrane STIM1 and TRPC1 in Vascular Smooth Muscle Cells. Circulation Research, 2008, 103, e97-104.	4.5	82
116	Inhibition of TRPM3 channel by antiâ€depressant and antiâ€psychotic drugs. FASEB Journal, 2008, 22, 937.5.	0.5	1
117	Phospholipase A2 and lysophospholipid roles in receptor activation of TRPC5 channel. FASEB Journal, 2008, 22, 937.8.	0.5	0
118	Inhibition of human TRPC5 channel by serum albumin. FASEB Journal, 2008, 22, 937.7.	0.5	0
119	Kv1.5 potassium channel gene regulation by Sp1 transcription factor and oxidative stress. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2719-H2725.	3.2	24
120	Channel Regulation by Extracellular Redox Protein. Channels, 2007, 1, 400-403.	2.8	11
121	Attenuation of store-operated Ca ²⁺ current impairs salivary gland fluid secretion in TRPC1(â^'/â^') mice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17542-17547.	7.1	200
122	Bipolar phospholipid sensing by TRPC5 calcium channel. Biochemical Society Transactions, 2007, 35, 101-104.	3.4	13
123	Ion channel switching and activation in smooth-muscle cells of occlusive vascular diseases. Biochemical Society Transactions, 2007, 35, 890-894.	3.4	62
124	Canonical Transient Receptor Potential 5. , 2007, , 109-123.		43
125	Blockers of K _V 1.3 channel suppress smooth muscle response to injury and neointimal hyperplasia. FASEB Journal, 2007, 21, A69.	0.5	0
126	Ions in smooth muscle, now and then. Journal of Physiology, 2006, 570, 3-3.	2.9	1

#	Article	IF	CITATIONS
127	Potassium channels at the beginnings of cell proliferation. Journal of Physiology, 2006, 570, 1-1.	2.9	7
128	Calcium-sensing mechanism in TRPC5 channels contributing to retardation of neurite outgrowth. Journal of Physiology, 2006, 572, 165-172.	2.9	88
129	Less REST, More Vascular Disease? Regulation of Cell Cycle and Migration of Vascular Smooth Muscle Cells. Cell Cycle, 2006, 5, 129-131.	2.6	8
130	E3-targeted anti-TRPC5 antibody inhibits store-operated calcium entry in freshly isolated pial arterioles. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2653-H2659.	3.2	81
131	Intracellular Coiled-coil Domain Engaged in Subunit Interaction and Assembly of Melastatin-related Transient Receptor Potential Channel 2. Journal of Biological Chemistry, 2006, 281, 38748-38756.	3.4	57
132	Sensing of Lysophospholipids by TRPC5 Calcium Channel. Journal of Biological Chemistry, 2006, 281, 4977-4982.	3.4	114
133	Upregulated TRPC1 Channel in Vascular Injury In Vivo and Its Role in Human Neointimal Hyperplasia. Circulation Research, 2006, 98, 557-563.	4.5	195
134	A Sphingosine-1–Phosphate-Activated Calcium Channel Controlling Vascular Smooth Muscle Cell Motility. Circulation Research, 2006, 98, 1381-1389.	4.5	152
135	Sensing of Lysophospholipids by TRPC5 Calcium channel. FASEB Journal, 2006, 20, A330.	0.5	Ο
136	Peptide‧pecific Antibody as a Tool to Evaluate TRPM3 Ion Channel Function. FASEB Journal, 2006, 20, A329.	0.5	0
137	Inhibition of human TRPC5 activity by PIP2. FASEB Journal, 2006, 20, A329.	0.5	1
138	EMERGING FUNCTIONS OF 10 TYPES OF TRP CATIONIC CHANNEL IN VASCULAR SMOOTH MUSCLE. Clinical and Experimental Pharmacology and Physiology, 2005, 32, 597-603.	1.9	91
139	Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: a differential, extracellular and voltage-dependent effect. British Journal of Pharmacology, 2005, 145, 405-414.	5.4	235
140	Generation of functional ion-channel tools by E3 targeting. Nature Biotechnology, 2005, 23, 1289-1293.	17.5	117
141	TRPC1: store-operated channel and more. Pflugers Archiv European Journal of Physiology, 2005, 451, 53-60.	2.8	152
142	Plasticity of TRPC expression in arterial smooth muscle: correlation with store-operated Ca ²⁺ entry. American Journal of Physiology - Cell Physiology, 2005, 288, C872-C880.	4.6	145
143	Downregulated REST Transcription Factor Is a Switch Enabling Critical Potassium Channel Expression and Cell Proliferation. Molecular Cell, 2005, 20, 45-52.	9.7	133
144	Regulation of Arterial Tone by K _V 1 Potassium Channels. Circulation Research, 2005, 96, .	4.5	4

#	Article	IF	CITATIONS
145	Functional up-regulation ofKCNAgene family expression in murine mesenteric resistance artery smooth muscle. Journal of Physiology, 2004, 556, 29-42.	2.9	37
146	Human TRPC5 channel activated by a multiplicity of signals in a single cell. Journal of Physiology, 2004, 559, 739-750.	2.9	117
147	Non-selective cationic channels of smooth muscle and the mammalian homologues ofDrosophilaTRP. Journal of Physiology, 2004, 559, 685-706.	2.9	220
148	TRPC1 store-operated cationic channel subunit. Cell Calcium, 2003, 33, 433-440.	2.4	123
149	Pharmacological profile of store-operated channels in cerebral arteriolar smooth muscle cells. British Journal of Pharmacology, 2003, 139, 955-965.	5.4	72
150	Cholesterol Depletion Impairs Vascular Reactivity to Endothelin-1 by Reducing Store-Operated Ca 2+ Entry Dependent on TRPC1. Circulation Research, 2003, 93, 839-847.	4.5	193
151	Critical Intracellular Ca2+ Dependence of Transient Receptor Potential Melastatin 2 (TRPM2) Cation Channel Activation. Journal of Biological Chemistry, 2003, 278, 11002-11006.	3.4	241
152	Activation Thresholds of K _V , BK andCl _{Ca} Channels in Smooth Muscle Cells in Pial Precapillary Arterioles. Journal of Vascular Research, 2002, 39, 122-130.	1.4	24
153	Discrete storeâ€operated calcium influx into an intracellular compartment in rabbit arteriolar smooth muscle. Journal of Physiology, 2002, 543, 455-464.	2.9	60
154	SOCs – Storeâ€Operated Channels in Vascular Smooth Muscle?. Journal of Physiology, 2002, 544, 1-1.	2.9	5
155	Prevention of a hypoxic Ca2+ i response by SERCA inhibitors in cerebral arterioles. British Journal of Pharmacology, 2002, 135, 927-934.	5.4	9
156	Rho-kinase inhibitors prevent agonist-induced vasospasm in human internal mammary artery. British Journal of Pharmacology, 2001, 132, 302-308.	5.4	55
157	Expression and function of native potassium channel (K V α1) subunits in terminal arterioles of rabbit. Journal of Physiology, 2001, 534, 691-700.	2.9	64
158	Identification and Pharmacological Correction of a Membrane Trafficking Defect Associated with a Mutation in the Sulfonylurea Receptor Causing Familial Hyperinsulinism. Journal of Biological Chemistry, 2001, 276, 35947-35952.	3.4	90
159	TrpC1 Is a Membrane-Spanning Subunit of Store-Operated Ca ²⁺ Channels in Native Vascular Smooth Muscle Cells. Circulation Research, 2001, 88, 84-87.	4.5	452
160	Identification of molecular regions responsible for the membrane trafficking of Kir6.2. Pflugers Archiv European Journal of Physiology, 2000, 440, 481-487.	2.8	18
161	Vasorelaxant properties of nicorandil on human radial artery. European Journal of Cardio-thoracic Surgery, 2000, 17, 319-324.	1.4	24
162	Role of K+ channels in A2A adenosine receptor-mediated dilation of the pressurized renal arcuate artery. British Journal of Pharmacology, 1999, 126, 494-500.	5.4	19

#	Article	IF	CITATIONS
163	Block of human aorta Kir6.1 by the vascular KATP channel inhibitor U37883A. British Journal of Pharmacology, 1999, 128, 667-672.	5.4	23
164	Inhibitors of spasmogen-induced Ca2+ channel suppression in smooth muscle cells from small intestine. British Journal of Pharmacology, 1998, 125, 667-674.	5.4	6
165	A method for direct patch-clamp recording from smooth muscle cells embedded in functional brain microvessels. Pflugers Archiv European Journal of Physiology, 1998, 435, 564-569.	2.8	24
166	K+-induced dilation of a small renal artery: no role for inward rectifier K+ channels. Cardiovascular Research, 1998, 37, 780-790.	3.8	65
167	Ionic currents and inhibitory effects of glibenclamide in seminal vesicle smooth muscle cells. British Journal of Pharmacology, 1995, 115, 1447-1454.	5.4	19
168	Multiple G-protein-coupled pathways inhibit N-type Ca channels of neurons. Life Sciences, 1995, 56, 989-992.	4.3	32
169	Inhibition of delayed rectifier K ⁺ â€current by levcromakalim in single intestinal smooth muscle cells: effects of cations and dependence on K ⁺ â€flux. British Journal of Pharmacology, 1995, 114, 391-399.	5.4	12
170	K channel activation by nucleotide diphosphates and its inhibition by glibenclamide in vascular smooth muscle cells. British Journal of Pharmacology, 1993, 110, 573-582.	5.4	176
171	Single channel and whole ell K urrents evoked by levcromakalim in smooth muscle cells from the rabbit portal vein. British Journal of Pharmacology, 1993, 110, 583-590.	5.4	82
172	Inhibitory effects of histamine and bradykinin on calcium current in smooth muscle cells isolated from guineaâ€pig ileum Journal of Physiology, 1993, 463, 565-583.	2.9	31
173	Pertussis toxin and voltage dependence distinguish multiple pathways modulating calcium channels of rat sympathetic neurons. Neuron, 1992, 8, 97-106.	8.1	186
174	A diffusible second messenger mediates one of the pathways coupling receptors to calcium channels in rat sympathetic neurons. Neuron, 1991, 6, 859-867.	8.1	214
175	Intracellular Ca2+ buffers disrupt muscarinic suppression of Ca2+ current and M current in rat sympathetic neurons Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 652-656.	7.1	155
176	Effects of pinaverium on voltageâ€activated calcium channel currents of single smooth muscle cells isolated from the longitudinal muscle of the rabbit jejunum. British Journal of Pharmacology, 1990, 99, 374-378.	5.4	27
177	Mechanism of calcium channel block by D600 in single smooth muscle cells from rabbit ear artery Circulation Research, 1989, 64, 928-936.	4.5	30
178	Characterization of a voltage-gated K+ channel that accelerates the rod response to dim light. Neuron, 1989, 3, 573-581.	8.1	105
179	Effects of potassium channel toxins from <i>Leiurus quinquestriatus hebraeus</i> venom on responses to cromakalim in rabbit blood vessels. British Journal of Pharmacology, 1989, 98, 817-826.	5.4	35
180	Properties of the cromakalimâ€induced potassium conductance in smooth muscle cells isolated from the rabbit portal vein. British Journal of Pharmacology, 1989, 98, 851-864.	5.4	130

#	Article	IF	CITATIONS
181	Two components of potassium current activated by depolarization of single smooth muscle cells from the rabbit portal vein Journal of Physiology, 1989, 418, 293-309.	2.9	154
182	A voltageâ€dependent outward current with fast kinetics in single smooth muscle cells isolated from rabbit portal vein Journal of Physiology, 1989, 412, 397-414.	2.9	83
183	Action of nifedipine of BAY K8644 is dependent on calcium channel state in single smooth muscle cells from rabbit ear artery. Pflugers Archiv European Journal of Physiology, 1988, 411, 590-592.	2.8	41
184	A simple method of fast extracellular solution exchange for the study of whole-cell or single channel currents using patch-clamp technique. Pflugers Archiv European Journal of Physiology, 1987, 410, 335-337.	2.8	27
185	Electrophysiological and other aspects of the relaxant action of isoprenaline in guineaâ€pig isolated trachealis. British Journal of Pharmacology, 1985, 86, 843-854.	5.4	64