Song Ge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6072629/publications.pdf

Version: 2024-02-01

81743 62479 7,001 94 39 80 h-index citations g-index papers 96 96 96 7845 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mutational meltdown or controlled chain reaction: The dynamics of rapid plastome evolution in the hyperdiversity of Poaceae. Journal of Systematics and Evolution, 2023, 61, 328-344.	1.6	5
2	Endoâ€allopolyploidy of autopolyploids and recurrent hybridization—A possible mechanism to explain the unresolved Yâ€genome donor in polyploid <i>Elymus</i> species (Triticeae: Poaceae). Journal of Systematics and Evolution, 2022, 60, 344-360.	1.6	4
3	A well-supported nuclear phylogeny of Poaceae and implications for the evolution of C4 photosynthesis. Molecular Plant, 2022, 15, 755-777.	3.9	47
4	OUP accepted manuscript. DNA Research, 2022, , .	1.5	4
5	The Gastrodia menghaiensis (Orchidaceae) genome provides new insights of orchid mycorrhizal interactions. BMC Plant Biology, 2022, 22, 179.	1.6	13
6	Genomic landscape of parallel domestication of upland rice and its implications. Journal of Systematics and Evolution, 2021, 59, 229-239.	1.6	5
7	Genome evolution in <i>Oryza</i> allopolyploids of various ages: Insights into the process of diploidization. Plant Journal, 2021, 105, 721-735.	2.8	5
8	Identification of long noncoding natural antisense transcripts (IncNATs) correlated with drought stress response in wild rice (Oryza nivara). BMC Genomics, 2021, 22, 424.	1.2	10
9	Stepwise selection of natural variations at <i>CTB2</i> and <i>CTB4a</i> improves cold adaptation during domestication of <i>japonica</i> rice. New Phytologist, 2021, 231, 1056-1072.	3.5	30
10	Genome-wide investigation on transcriptional responses to drought stress in wild and cultivated rice. Environmental and Experimental Botany, 2021, 189, 104555.	2.0	6
11	The Tetracentron genome provides insight into the early evolution of eudicots and the formation of vessel elements. Genome Biology, 2020, 21, 291.	3.8	23
12	Evolution of genes and genomes in the genomics era. Science China Life Sciences, 2020, 63, 602-605.	2.3	7
13	Divergence in flowering time is a major component contributing to reproductive isolation between two wild rice species (Oryza rufipogon and O. nivara). Science China Life Sciences, 2020, 63, 1714-1724.	2.3	9
14	Population genetics and evolutionary history of Miscanthus species in China. Journal of Systematics and Evolution, 2019, 57, 530-542.	1.6	12
15	Introduction of barley to the Tibetan Plateau: an important step toward Tibetan civilization. National Science Review, 2019, 6, 1014-1014.	4.6	1
16	Resequencing 545 ginkgo genomes across the world reveals the evolutionary history of the living fossil. Nature Communications, 2019, 10, 4201.	5.8	99
17	Parallel Speciation of Wild Rice Associated with Habitat Shifts. Molecular Biology and Evolution, 2019, 36, 875-889.	3.5	31
18	Transposable elements drive rapid phenotypic variation in <i>Capsella rubella</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6908-6913.	3.3	97

#	Article	IF	Citations
19	Liriodendron genome sheds light on angiosperm phylogeny and species–pair differentiation. Nature Plants, 2019, 5, 18-25.	4.7	163
20	Decrease of gene expression diversity during domestication of animals and plants. BMC Evolutionary Biology, 2019, 19, 19.	3.2	42
21	Population genetics and evolutionary history of the wild rice species Oryza rufipogon and O.Ânivara in Sri Lanka. Ecology and Evolution, 2018, 8, 12056-12065.	0.8	6
22	A selfish genetic element confers non-Mendelian inheritance in rice. Science, 2018, 360, 1130-1132.	6.0	105
23	Genomic variation associated with local adaptation of weedy rice during de-domestication. Nature Communications, 2017, 8, 15323.	5.8	132
24	Natural Variation in the Promoter of GSE5 Contributes to Grain Size Diversity in Rice. Molecular Plant, 2017, 10, 685-694.	3.9	253
25	Machine learning algorithms improve the power of phytolith analysis: A case study of the tribe Oryzeae (Poaceae). Journal of Systematics and Evolution, 2017, 55, 377-384.	1.6	15
26	Characterization of the whole chloroplast genome of Chikusichloa mutica and its comparison with other rice tribe (Oryzeae) species. PLoS ONE, 2017, 12, e0177553.	1.1	28
27	The whole chloroplast genome of wild rice (<i>Oryza australiensis</i>). Mitochondrial DNA, 2016, 27, 1062-1063.	0.6	11
28	Draft genome of the living fossil Ginkgo biloba. GigaScience, 2016, 5, 49.	3.3	232
29	On the Origin of De Novo Genes in (i) Arabidopsis thaliana (i) Populations. Genome Biology and Evolution, 2016, 8, 2190-2202.	1.1	49
30	The impact and origin of copy number variations in the Oryza species. BMC Genomics, 2016, 17, 261.	1.2	30
31	Widespread and Adaptive Alterations in Genome-Wide Gene Expression Associated with Ecological Divergence of Two <i>Oryza</i> Species. Molecular Biology and Evolution, 2016, 33, 62-78.	3.5	26
32	Phylogenomic approaches to deciphering the tree of life. Journal of Systematics and Evolution, 2015, 53, 369-370.	1.6	25
33	Multiple origins of BBCC allopolyploid species in the rice genus (Oryza). Scientific Reports, 2015, 5, 14876.	1.6	20
34	Divergence and adaptive evolution of the gibberellin oxidase genes in plants. BMC Evolutionary Biology, 2015, 15, 207.	3.2	55
35	A host plant genome (<i>Zizania latifolia</i>) after a centuryâ€long endophyte infection. Plant Journal, 2015, 83, 600-609.	2.8	67
36	Are Differences in Genomic Data Sets due to True Biological Variants or Errors in Genome Assembly: An Example from Two Chloroplast Genomes. PLoS ONE, 2015, 10, e0118019.	1.1	41

#	Article	IF	CITATIONS
37	Multilocus species tree analyses resolve the ancient radiation of the subtribe Zizaniinae (Poaceae). Molecular Phylogenetics and Evolution, 2015, 84, 232-239.	1.2	18
38	COLD1 Confers Chilling Tolerance in Rice. Cell, 2015, 160, 1209-1221.	13.5	724
39	Frequent Introgressions from Diploid Species Contribute to the Adaptation of the Tetraploid Shepherd's Purse (Capsella bursa-pastoris). Molecular Plant, 2015, 8, 427-438.	3.9	40
40	Comparative phylogeography of the wildâ€rice genus <i>Zizania</i> (Poaceae) in eastern Asia and North America. American Journal of Botany, 2015, 102, 239-247.	0.8	29
41	Population genetic structure of <i>Oryza rufipogon</i> and <i>Oryza nivara</i> : implications for the origin of <i>O.Ânivara</i> . Molecular Ecology, 2015, 24, 5211-5228.	2.0	46
42	Multiple species of wild tree peonies gave rise to the â€~king of flowers', <i>Paeonia suffruticosa</i> Andrews. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141687.	1.2	74
43	Multilocus estimation of divergence times and ancestral effective population sizes of <i><scp>O</scp>ryza</i> > species and implications for the rapid diversification of the genus. New Phytologist, 2013, 198, 1155-1164.	3.5	43
44	Isolation and Characterization of Microsatellite Loci for a Bioenergy Grass, Miscanthus sacchariflorus (Poaceae). Applications in Plant Sciences, 2013, 1, 1200210.	0.8	3
45	Nucleotide diversity of $11 < \text{scp} > \text{S} < / \text{scp} > \text{seed storage protein gene and its implications for ecological adaptation of } < \text{i} > \text{Oryza nivara} < / \text{i} > \text{.} Journal of Systematics and Evolution, 2013, 51, 641-651.}$	1.6	6
46	Variability and adaptability of <i>Miscanthus</i> species evaluated for energy crop domestication. GCB Bioenergy, 2012, 4, 49-60.	2.5	107
47	The phylogeny of the BEP clade in grasses revisited: Evidence from the whole-genome sequences of chloroplasts. Molecular Phylogenetics and Evolution, 2012, 62, 573-578.	1.2	153
48	Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nature Biotechnology, 2012, 30, 105-111.	9.4	818
49	Divergent evolution of oxidosqualene cyclases in plants. New Phytologist, 2012, 193, 1022-1038.	3.5	122
50	Centres of plant endemism in China: places for survival or for speciation?. Journal of Biogeography, 2011, 38, 1267-1280.	1.4	316
51	Evolutionary History and Complementary Selective Relaxation of the Duplicated <i>PI</i> Genes in Grasses. Journal of Integrative Plant Biology, 2011, 53, 682-693.	4.1	8
52	Phylogeny and species delimitation of the Câ€genome diploid species in <i>Oryza</i> . Journal of Systematics and Evolution, 2011, 49, 386-395.	1.6	27
53	Development of microsatellite markers for <i>Miscanthus sinensis</i> (Poaceae) and crossâ€amplification in other related species. American Journal of Botany, 2011, 98, e195-7.	0.8	20
54	Genetic diversity and domestication history of African rice (Oryza glaberrima) as inferred from multiple gene sequences. Theoretical and Applied Genetics, 2011, 123, 21-31.	1.8	75

#	Article	IF	Citations
55	Molecular evidence for glacial expansion and interglacial retreat during Quaternary climatic changes in a montane temperate pine (Pinus kwangtungensis Chun ex Tsiang) in southern China. Plant Systematics and Evolution, 2010, 284, 219-229.	0.3	46
56	Biosystematic studies on Adenophora potaninii Korsh. complex (Campanulaceae) V. A taxonomic treatment. Journal of Systematics and Evolution, 2010, 48, 445-454.	1.6	1
57	Phylogeny and biogeography of the rice tribe (Oryzeae): Evidence from combined analysis of 20 chloroplast fragments. Molecular Phylogenetics and Evolution, 2010, 54, 266-277.	1.2	87
58	Multiple patterns of rDNA evolution following polyploidy in Oryza. Molecular Phylogenetics and Evolution, 2010, 55, 136-142.	1.2	32
59	Ecological divergence in the presence of gene flow in two closely related Oryza species (Oryza) Tj ETQq1 1 0.784	1314 rgBT 2.0	/Oyerlock 10
60	Positive effects of flower abundance and synchronous flowering on pollination success, and pollinia dispersal in rewardless Changnienia amoena (Orchidaceae). Biological Journal of the Linnean Society, 2010, 99, 477-488.	0.7	6
61	Isolation and characterization of 50 nuclear microsatellite markers for <i>Cathaya argyrophylla</i> , a Chinese endemic conifer. American Journal of Botany, 2010, 97, e117-20.	0.8	6
62	Selection on grain shattering genes and rates of rice domestication. New Phytologist, 2009, 184, 708-720.	3.5	140
63	A preliminary study on population genetic structure and phylogeography of the wild and cultivated Zizania latifolia (Poaceae) based on Adh1a sequences. Theoretical and Applied Genetics, 2008, 116, 835-843.	1.8	47
64	Contrasting population genetic structure and gene flow between Oryza rufipogon and Oryza nivara. Theoretical and Applied Genetics, 2008, 117, 1181-1189.	1.8	41
65	Analysis of 142 genes resolves the rapid diversification of the rice genus. Genome Biology, 2008, 9, R49.	13.9	124
66	Multilocus Analysis of Nucleotide Variation of Oryza sativa and Its Wild Relatives: Severe Bottleneck during Domestication of Rice. Molecular Biology and Evolution, 2007, 24, 875-888.	3.5	329
67	Genetics and phylogenetics of rice domestication. Current Opinion in Genetics and Development, 2007, 17, 533-538.	1.5	177
68	The Puzzle of Rice Domestication. Journal of Integrative Plant Biology, 2007, 49, 760-768.	4.1	161
69	Evidence that Natural Selection is the Primary Cause of the Guanine-cytosine Content Variation in Rice Genes. Journal of Integrative Plant Biology, 2007, 49, 1393-1399.	4.1	10
70	Phylogeography of the endangeredCathaya argyrophylla(Pinaceae) inferred from sequence variation of mitochondrial and nuclear DNA. Molecular Ecology, 2006, 15, 4109-4122.	2.0	127
71	Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnLâ€F sequences. New Phytologist, 2006, 170, 411-420.	3.5	148
72	Genetic Diversity in Accessions of Wild Rice Oryza granulata from South and Southeast Asia. Genetic Resources and Crop Evolution, 2006, 53, 197-204.	0.8	9

#	Article	IF	CITATIONS
73	Plant Biodiversity in China: Richly Varied, Endangered, and in Need of Conservation. Biodiversity and Conservation, 2006, 15, 3983-4026.	1.2	183
74	Genetic Variation in Hippophae rhamnoides ssp. sinensis (Elaeagnaceae) Revealed by RAPD Markers. Biochemical Genetics, 2006, 44, 186-197.	0.8	31
75	Genetic diversity and evolutionary relationships of Oryza species with the B- and C-genomes as revealed by SSR markers. Journal of Plant Biology, 2006, 49, 339-347.	0.9	18
76	Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytologist, 2005, 167, 249-265.	3.5	226
77	Genetic Diversity and Population Differentiation of Liaoning Weedy Rice Detected by RAPD and SSR Markers. Biochemical Genetics, 2005, 43, 261-270.	0.8	39
78	Identification of genomic constitutions of Oryza species with the B and C genomes by the PCR-RFLP method. Genetic Resources and Crop Evolution, 2005, 52, 69-76.	0.8	15
79	Molecular phylogeny of Oryzeae (Poaceae) based on DNA sequences from chloroplast, mitochondrial, and nuclear genomes. American Journal of Botany, 2005, 92, 1548-1558.	0.8	130
80	Cytotype Variation and Cytogeography of Scilla Sinensis (LOURIRO) Merrill (Hyacinthaceae) in China. Hereditas, 2004, 129, 151-160.	0.5	14
81	Microsatellite analysis of genetic diversity and population genetic structure of a wild rice (Oryza) Tj ETQq $1\ 1\ 0.784$	4314 rgBT	<mark> 98</mark> verlock
82	Oryza coarctata: the name that best reflects the relationships of Porteresia coarctata (Poaceae:) Tj ETQq0 0 0 rgB	T/Overlock	k 10 Tf 50 3
83	A phylogeny of the rice tribe Oryzeae (Poaceae) based on <i>matK</i> sequence data. American Journal of Botany, 2002, 89, 1967-1972.	0.8	53
84	Title is missing!. Euphytica, 2002, 124, 273-281.	0.6	23
85	Intra-Population Genetic Structure of Oryza rufipogon Griff. in Yunnan, China. Journal of Plant Research, 2001, 114, 107-113.	1.2	15
86	Genetic structure and heterozygosity variation between generations of Ophiopogon xylorrhizus (Liliaceae s.l.), an endemic species in Yunnan, southwest China. Biochemical Genetics, 2001, 39, 93-98.	0.8	2
87	Clonality in wild rice (Oryza rufipogon, Poaceae) and its implications for conservation management. American Journal of Botany, 2001, 88, 1058-1064.	0.8	51
88	Genetic Erosion in Northern Marginal Population of the Common Wild RiceOryza RufipogonGriff. and its Conservation, Revealed by the Change of Population Genetic cstructure. Hereditas, 2000, 133, 47-53.	0.5	66
89	Title is missing!. Biochemical Genetics, 2000, 38, 138-146.	0.8	8

 $Spatial\ Autocorrelation\ of\ Genetic\ Variation\ in\ Three\ Stands\ of\ Ophiopogon\ xylorrhizus (Liliaceaes.l.)\ Tj\ ETQq0\ 0\ 0\ rg\ BT\ /Overlock\ 10\ Tf\ 50\ rg\ 10\ rg$

90

SONG GE

#	Article	IF	CITATION
91	Allozyme variation in the diploid (A genome) populations of Scilla scilloides (Hyacinthaceae). Plant Systematics and Evolution, 1999, 218, 23-31.	0.3	6
92	Comparisons of Genetic Diversity in the Endangered Adenophora lobophylla and Its Widespread Congener, A. potaninii. Conservation Biology, 1999, 13, 509-513.	2.4	36
93	A study on population genetic structure of Oryzu meyeriana (Zoll. et Mor. ex Steud.) Baill. from Yunnan and itsin situ conservation significance. Science in China Series C: Life Sciences, 1999, 42, 102-108.	1.3	7
94	Allozyme Variation in Ophiopogon xylorrhizus, an Extreme Endemic Species of Yunnan, China. Conservation Biology, 1997, 11, 562-565.	2.4	29