Jia-Xing Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6072483/publications.pdf

Version: 2024-02-01

		6613	10734
180	19,954	79	138
papers	citations	h-index	g-index
105	105	105	16707
195	195	195	16727
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Performance of MXene incorporated MOF-derived carbon electrode on deionization of uranium(VI). Chemical Engineering Journal, 2022, 430, 132702.	12.7	19
2	One-step method to prepare core-shell magnetic nanocomposite encapsulating silver nanoparticles with superior catalytic and antibacterial activity. Journal of Colloid and Interface Science, 2022, 607, 1730-1740.	9.4	13
3	Effective inspissation of uranium(VI) from radioactive wastewater using flow electrode capacitive deionization. Separation and Purification Technology, 2022, 283, 120172.	7.9	37
4	Hollow Fe3O4 nanospheres covered by phosphate-modified layered double hydroxides for the removal of uranium (VI) from water and soil. Separation and Purification Technology, 2022, 288, 120688.	7.9	26
5	Easily synthesized mesoporous aluminum phosphate for the enhanced adsorption performance of $U(VI)$ from aqueous solution. Journal of Hazardous Materials, 2022, 432, 128675.	12.4	22
6	Efficient removal of Sr2+ and Cs+ from aqueous solutions using a sulfonic acid-functionalized Zr-based metal–organic framework. Journal of Radioanalytical and Nuclear Chemistry, 2021, 328, 769-783.	1.5	12
7	The detection and characterization techniques for the interaction between graphene oxide and natural colloids: A review. Science of the Total Environment, 2021, , 151906.	8.0	2
8	Synthesis of flexible cross-linked cryptomelane-type manganese oxide nanowire membranes and their application for $U(VI)$ and $Eu(III)$ elimination from solutions. Chemical Engineering Journal, 2020, 381, 122744.	12.7	89
9	MOF-derived CoN/N-C@SiO2 yolk-shell nanoreactor with dual active sites for highly efficient catalytic advanced oxidation processes. Chemical Engineering Journal, 2020, 381, 122670.	12.7	127
10	Carbon supported PdNi alloy nanoparticles on SiO ₂ nanocages with enhanced catalytic performance. Inorganic Chemistry Frontiers, 2020, 7, 3081-3091.	6.0	94
11	Biomass-Based Cellulose Functionalized by Phosphonic Acid with High Selectivity and Capacity for Capturing U(VI) in Aqueous Solution. Applied Sciences (Switzerland), 2020, 10, 5455.	2.5	7
12	Fabrication of noble metal nanoparticles decorated on one dimensional hierarchical polypyrrole@MoS ₂ microtubes. Journal of Materials Chemistry B, 2020, 8, 7801-7811.	5.8	34
13	Facile access to amino-substituted cyclopentafullerenes: novel reaction of [60] fullerene with \hat{l}^2 -substituted propional dehydes and secondary amines in the absence/presence of magnesium perchlorate. Organic and Biomolecular Chemistry, 2020, 18, 6866-6880.	2.8	7
14	Insight into the removal of graphene oxide by nanoscale zero-valent iron. Journal of Molecular Liquids, 2020, 314, 113553.	4.9	1
15	Pseudocapacitive deionization of uranium(VI) with WO3/C electrode. Chemical Engineering Journal, 2020, 398, 125460.	12.7	99
16	Magnetically separable h-Fe3O4@Au/polydopamine nanosphere with a hollow interior: A versatile candidate for nanocatalysis and metal ion adsorption. Chemical Engineering Journal, 2020, 398, 125571.	12.7	36
17	Corrigendum to: Effect of humic acid, fulvic acid, pH, ionic strength and temperature on ⁶³ Ni(II) sorption to MnO ₂ . Radiochimica Acta, 2020, 108, 591-591.	1.2	O
18	Efficient removal of metal contaminants by EDTA modified MOF from aqueous solutions. Journal of Colloid and Interface Science, 2019, 555, 403-412.	9.4	104

#	Article	IF	CITATIONS
19	Plasma-facilitated modification of pumpkin vine-based biochar and its application for efficient elimination of uranyl from aqueous solution. Plasma Science and Technology, 2019, 21, 095502.	1.5	15
20	Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Science China Chemistry, 2019, 62, 933-967.	8.2	256
21	Amidoxime-Functionalized Hollow Carbon Spheres for Efficient Removal of Uranium from Wastewater. ACS Sustainable Chemistry and Engineering, 2019, 7, 10800-10807.	6.7	70
22	Modeling and EXAFS investigation of U(VI) sequestration on Fe3O4/PCMs composites. Chemical Engineering Journal, 2019, 369, 736-744.	12.7	50
23	Two-dimensional copper-based metalâ°'organic frameworks nano-sheets composites: One-step synthesis and highly efficient U(VI) immobilization. Journal of Hazardous Materials, 2019, 373, 580-590.	12.4	65
24	Is the interaction between graphene oxide and minerals reversible?. Environmental Pollution, 2019, 249, 785-793.	7.5	12
25	Ultra-thin iron phosphate nanosheets for high efficient U(VI) adsorption. Journal of Hazardous Materials, 2019, 371, 83-93.	12.4	98
26	Fabrication of carboxyl and amino functionalized carbonaceous microspheres and their enhanced adsorption behaviors of U(VI). Journal of Colloid and Interface Science, 2019, 543, 225-236.	9.4	43
27	Insight into the mechanism of adsorption of phenol and resorcinol on activated carbons with different oxidation degrees. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 563, 22-30.	4.7	54
28	Poly(amidoxime) functionalized MoS2 for efficient adsorption of uranium(VI) in aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, 2019, 319, 379-386.	1.5	16
29	Construction of dual defect mediated Z-scheme photocatalysts for enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 245, 399-409.	20.2	174
30	Surface Area- and Structure-Dependent Effects of LDH for Highly Efficient Dye Removal. ACS Sustainable Chemistry and Engineering, 2019, 7, 905-915.	6.7	39
31	Adsorption and desorption of U(VI) on different-size graphene oxide. Chemical Engineering Journal, 2019, 360, 941-950.	12.7	118
32	Adsorption of U(VI) on nonthermal plasma-modified carbon nanotubes. Scientia Sinica Chimica, 2019, 49, 184-194.	0.4	2
33	Effect of Fe3O4@PDA morphology on the U(VI) entrapment from aqueous solution. Applied Surface Science, 2018, 448, 297-308.	6.1	44
34	Sorption of $17\hat{l}^2$ -estradiol to the dissolved organic matter from animal wastes: effects of composting and the role of fulvic acid-like aggregates. Environmental Science and Pollution Research, 2018, 25, 16875-16884.	5.3	8
35	Synthesis of Porous Magnetic Ni _{0.6} Fe _{2.4} O ₄ Nanorods for Highly Efficient Adsorption of U(VI). Journal of Chemical & Efficient Adsorption of U(VI).	1.9	8
36	Ultrathin g-C ₃ N ₄ nanosheets coupled with amorphous Cu-doped FeOOH nanoclusters as 2D/OD heterogeneous catalysts for water remediation. Environmental Science: Nano, 2018, 5, 1179-1190.	4.3	156

#	Article	IF	CITATIONS
37	Fabrication of a Novel Transparent SERS Substrate Comprised of Ag-nanoparticle Arrays and its Application in Rapid Detection of Ractopamine on Meat. Food Analytical Methods, 2018, 11, 2329-2335.	2.6	28
38	Insight into the impact of interaction between attapulgite and graphene oxide on the adsorption of U(VI). Chemical Engineering Journal, 2018, 343, 217-224.	12.7	112
39	Distinct interface behaviors of Ni(<scp>ii</scp>) on graphene oxide and oxidized carbon nanotubes triggered by different topological aggregations. Nanoscale, 2018, 10, 1383-1393.	5.6	20
40	A New Application of a Mesoporous Hybrid of Tungsten Oxide and Carbon as an Adsorbent for Elimination of Sr ²⁺ and Co ²⁺ from an Aquatic Environment. ACS Sustainable Chemistry and Engineering, 2018, 6, 2462-2473.	6.7	21
41	Highly enhanced adsorption performance of U(VI) by non-thermal plasma modified magnetic Fe3O4 nanoparticles. Journal of Colloid and Interface Science, 2018, 513, 92-103.	9.4	128
42	Interaction between Al2O3 and different sizes of GO in aqueous environment. Environmental Pollution, 2018, 243, 1802-1809.	7.5	18
43	Strongly Coupled gâ€C ₃ N ₄ Nanosheetsâ€Co ₃ O ₄ Quantum Dots as 2D/0D Heterostructure Composite for Peroxymonosulfate Activation. Small, 2018, 14, e1801353.	10.0	284
44	The influential factors towards graphene oxides removal by activated carbons: Activated functional groups vs BET surface area. Journal of Molecular Liquids, 2018, 271, 142-150.	4.9	16
45	Furfuryl alcohol functionalized graphene for sorption of radionuclides. Arabian Journal of Chemistry, 2017, 10, 837-844.	4.9	14
46	The degradation of oxadiazon by non-thermal plasma with a dielectric barrier configuration. Plasma Science and Technology, 2017, 19, 034001.	1.5	7
47	Formation of C ₆₀ fullerene-bonded-CNTs using radio frequency plasma. RSC Advances, 2017, 7, 21124-21127.	3.6	7
48	Adsorption, Aggregation, and Deposition Behaviors of Carbon Dots on Minerals. Environmental Science &	10.0	77
49	Adsorption of carbon dots onto Al2O3 in aqueous: Experimental and theoretical studies. Environmental Pollution, 2017, 227, 31-38.	7.5	20
50	Plasma surface modification of materials and their entrapment of water contaminant: A review. Plasma Processes and Polymers, 2017, 14, 1600218.	3.0	52
51	Removal of U(VI) from Aqueous Solution by Amino Functionalized Flake Graphite Prepared by Plasma Treatment. ACS Sustainable Chemistry and Engineering, 2017, 5, 4073-4085.	6.7	102
52	Dual shelled Fe ₃ O ₄ /polydopamine hollow microspheres as an effective Eu(<scp>iii</scp>) adsorbent. Journal of Materials Chemistry A, 2017, 5, 2947-2958.	10.3	79
53	Plasma-Facilitated Synthesis of Amidoxime/Carbon Nanofiber Hybrids for Effective Enrichment of ²³⁸ U(VI) and ²⁴¹ Am(III). Environmental Science & Enrichment of 12274-12282.	10.0	127
54	Plasma-induced grafting of acrylic acid on bentonite for the removal of U(VI) from aqueous solution. Plasma Science and Technology, 2017, 19, 115501.	1.5	22

#	Article	IF	CITATIONS
55	A Valuable Biochar from Poplar Catkins with High Adsorption Capacity for Both Organic Pollutants and Inorganic Heavy Metal Ions. Scientific Reports, 2017, 7, 10033.	3.3	66
56	High performance polydopamine-functionalized mesoporous silica nanospheres for U(VI) removal. Applied Surface Science, 2017, 426, 1121-1132.	6.1	73
57	Unexpected ultrafast and high adsorption capacity of oxygen vacancy-rich WO _x /C nanowire networks for aqueous Pb ²⁺ and methylene blue removal. Journal of Materials Chemistry A, 2017, 5, 15913-15922.	10.3	150
58	Interaction mechanisms of U(VI) and graphene oxide from the perspective of particle size distribution. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311, 209-217.	1.5	23
59	Rice husks as a sustainable silica source for hierarchical flower-like metal silicate architectures assembled into ultrathin nanosheets for adsorption and catalysis. Journal of Hazardous Materials, 2017, 321, 92-102.	12.4	136
60	Highly efficient synthesis of [60]fullerene oxides by plasma jet. Royal Society Open Science, 2017, 4, 170658.	2.4	5
61	Multifunctional flexible free-standing titanate nanobelt membranes as efficient sorbents for the removal of radioactive 90Sr2+ and 137Cs+ ions and oils. Scientific Reports, 2016, 6, 20920.	3.3	52
62	Enhanced immobilization of ReO4â^' by nanoscale zerovalent iron supported on layered double hydroxide via an advanced XAFS approach: Implications for TcO4â^' sequestration. Applied Catalysis B: Environmental, 2016, 192, 268-276.	20.2	135
63	HF-Free Synthesis of Nanoscale Metal–Organic Framework NMIL-100(Fe) as an Efficient Dye Adsorbent. ACS Sustainable Chemistry and Engineering, 2016, 4, 3368-3378.	6.7	128
64	Spectroscopic and theoretical studies on the counterion effect of Cu(<scp>ii</scp>) ion and graphene oxide interaction with titanium dioxide. Environmental Science: Nano, 2016, 3, 1361-1368.	4.3	77
65	Cu(OAc) ₂ -Mediated Reaction of [60]Fullerene with Aldehydes and Primary Amines for the Synthesis of Fulleropyrrolines. Journal of Organic Chemistry, 2016, 81, 9296-9307.	3.2	30
66	New Insight into GO, Cadmium(II), Phosphate Interaction and Its Role in GO Colloidal Behavior. Environmental Science & Environ	10.0	85
67	Surface Modification of Graphene Oxides by Plasma Techniques and Their Application for Environmental Pollution Cleanup. Chemical Record, 2016, 16, 295-318.	5.8	40
68	Highly efficient entrapment of U(VI) by using porous magnetic Ni 0.6 Fe 2.4 O 4 micro-particles as the adsorbent. Journal of the Taiwan Institute of Chemical Engineers, 2016, 65, 367-377.	5.3	43
69	A strategically designed porous magnetic N-doped Fe/Fe ₃ C@C matrix and its highly efficient uranium(<scp>vi</scp>) remediation. Inorganic Chemistry Frontiers, 2016, 3, 1227-1235.	6.0	63
70	The adsorption of Eu(III) on carbonaceous nanofibers: batch experiments and modeling study. Journal of Molecular Liquids, 2016, 222, 456-462.	4.9	20
71	Hybrid OD–2D Nanoheterostructures: In Situ Growth of Amorphous Silver Silicates Dots on g-C ₃ N ₄ Nanosheets for Full-Spectrum Photocatalysis. ACS Applied Materials & amp; Interfaces, 2016, 8, 35138-35149.	8.0	111
72	Reaction of C ₆₀ with Inactive Secondary Amines and Aldehydes and the Cu(OAc) ₂ -Promoted Regioselective Intramolecular C–H Functionalization of the Generated Fulleropyrrolidines. Journal of Organic Chemistry, 2016, 81, 11201-11209.	3.2	20

#	Article	IF	CITATIONS
73	Preparation of micron sized graphite using a spark plasma technique. RSC Advances, 2016, 6, 50776-50779.	3.6	5
74	Zero valent iron/poly(amidoxime) adsorbent for the separation and reduction of U($<$ scp $>$ vi $<$ /scp $>$). RSC Advances, 2016, 6, 52076-52081.	3.6	24
75	Ozonated graphene oxides as high efficient sorbents for Sr(II) and U(VI) removal from aqueous solutions. Science China Chemistry, 2016, 59, 869-877.	8.2	68
76	Graphene oxides with different oxidation degrees for Co(II) ion pollution management. Chemical Engineering Journal, 2016, 302, 763-772.	12.7	68
77	Formation of Fe ₃ O ₄ @MnO ₂ ball-in-ball hollow spheres as a high performance catalyst with enhanced catalytic performances. Journal of Materials Chemistry A, 2016, 4, 1414-1422.	10.3	248
78	Coagulation Behavior of Graphene Oxide on Nanocrystallined Mg/Al Layered Double Hydroxides: Batch Experimental and Theoretical Calculation Study. Environmental Science & Echnology, 2016, 50, 3658-3667.	10.0	270
79	Enhanced sequestration of Cr(VI) by nanoscale zero-valent iron supported on layered double hydroxide by batch and XAFS study. Chemosphere, 2016, 148, 227-232.	8.2	125
80	Synthesis and Functionalization of Symmetrical 2,5-Diaryl Fulleropyrrolidines: Ferric Perchlorate-Mediated One-Step Reaction of [60]Fullerene with Arylmethanamines. Journal of Organic Chemistry, 2016, 81, 1769-1777.	3.2	33
81	Effect of solution properties on the interaction of 90Sr(II) with GMZ bentonite. Korean Journal of Chemical Engineering, 2015, 32, 2264-2272.	2.7	2
82	Amidoxime functionalization of mesoporous silica and its high removal of U(<scp>vi</scp>). Polymer Chemistry, 2015, 6, 5376-5384.	3.9	89
83	Surface functionalization graphene oxide by polydopamine for high affinity of radionuclides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 258-266.	4.7	87
84	Cu(OAc) ₂ -promoted reaction of [60]fullerene with primary amines or diamines. Organic and Biomolecular Chemistry, 2015, 13, 8405-8410.	2.8	16
85	Interactions of Eu(III) and 243Am(III) with humic acid-bound Î ³ -Al2O3 studied using batch and kinetic dissociation techniques. Chemical Engineering Journal, 2015, 273, 588-594.	12.7	25
86	Efficient removal of Eu(III) from aqueous solutions using super-adsorbent of bentonite–polyacrylamide composites. Journal of Radioanalytical and Nuclear Chemistry, 2015, 306, 497-505.	1.5	24
87	Rationally designed 1D Ag@AgVO ₃ nanowire/graphene/protonated g-C ₃ N ₄ nanosheet heterojunctions for enhanced photocatalysis via electrostatic self-assembly and photochemical reduction methods. Journal of Materials Chemistry A, 2015. 3. 10119-10126.	10.3	233
88	Cotton derived carbonaceous aerogels for the efficient removal of organic pollutants and heavy metal ions. Journal of Materials Chemistry A, 2015, 3, 6073-6081.	10.3	205
89	Different Interaction Mechanisms of Eu(III) and ²⁴³ Am(III) with Carbon Nanotubes Studied by Batch, Spectroscopy Technique and Theoretical Calculation. Environmental Science & Eamp; Technology, 2015, 49, 11721-11728.	10.0	113
90	Evaluation of the influence of environmental conditions on the removal of Pb(II) from wastewater by Ca-rectorite. Separation Science and Technology, 2015, , 150623132817002.	2.5	3

#	Article	IF	Citations
91	High performance of phosphate-functionalized graphene oxide for the selective adsorption of U(VI) from acidic solution. Journal of Nuclear Materials, 2015, 466, 56-64.	2.7	163
92	Competitive Adsorption of Pb ^{II} , Ni ^{II} , and Sr ^{II} lons on Graphene Oxides: A Combined Experimental and Theoretical Study. ChemPlusChem, 2015, 80, 480-484.	2.8	97
93	Reductive immobilization of uranium by PAAM–FeS/Fe ₃ O ₄ magnetic composites. Environmental Science: Water Research and Technology, 2015, 1, 169-176.	2.4	36
94	Ozone degradation of 1-naphthol on multiwalled carbon nanotubes/iron oxides and recycling of the adsorbent. Chemical Engineering Journal, 2015, 262, 1303-1310.	12.7	41
95	XPS investigation of impurities containing boron films affected by energetic deuterium implantation and thermal desorption. Journal of Nuclear Materials, 2015, 457, 118-123.	2.7	11
96	Synthesis and lithium-storage properties of MnO/reduced graphene oxide composites derived from graphene oxide plus the transformation of Mn(<scp>vi</scp>) to Mn(<scp>ii</scp>) by the reducing power of graphene oxide. Journal of Materials Chemistry A, 2015, 3, 297-303.	10.3	66
97	Polydopamine Integrated Nanomaterials and Their Biomedical Applications. Current Pharmaceutical Design, 2015, 21, 4262-4275.	1.9	30
98	Efficient removal of a typical dye and Cr(<scp>vi</scp>) reduction using N-doped magnetic porous carbon. RSC Advances, 2014, 4, 63110-63117.	3.6	52
99	Theoretical studies on the pyrolysis of (Thion)carbonates. Journal of Theoretical and Computational Chemistry, 2014, 13, 1450051.	1.8	7
100	Applications of conjugated polymer based composites in wastewater purification. RSC Advances, 2014, 4, 62160-62178.	3.6	114
101	Enhanced Electrochemical Performance of Reduced Graphene Oxides by H ₂ /Ar Plasma Treatment. Journal of Physical Chemistry C, 2014, 118, 28440-28447.	3.1	29
102	<i>In Situ</i> lon Exchange Synthesis of Strongly Coupled Ag@AgCl/g-C ₃ N ₄ Porous Nanosheets as Plasmonic Photocatalyst for Highly Efficient Visible-Light Photocatalysis. ACS Applied Materials & Diterfaces, 2014, 6, 22116-22125.	8.0	393
103	Synthesis of amidoxime-functionalized Fe3O4@SiO2 core–shell magnetic microspheres for highly efficient sorption of U(VI). Chemical Engineering Journal, 2014, 235, 275-283.	12.7	431
104	Hierarchical nanocomposites of polyaniline nanorods arrays on graphitic carbon nitride sheets with synergistic effect for photocatalysis. Catalysis Today, 2014, 224, 114-121.	4.4	73
105	Theoretical studies on the pyrolysis of thiocarbonates. Computational and Theoretical Chemistry, 2014, 1030, 67-73.	2.5	20
106	Water-soluble polyacrylamide coated-Fe3O4 magnetic composites for high-efficient enrichment of U(VI) from radioactive wastewater. Chemical Engineering Journal, 2014, 246, 268-276.	12.7	137
107	Bandgap Engineering and Mechanism Study of Nonmetal and Metal Ion Codoped Carbon Nitride: C+Fe as an Example. Chemistry - A European Journal, 2014, 20, 9805-9812.	3.3	137
108	Lewis Base-Catalyzed Reaction of Aziridinofullerene with Ureas for the Preparation of Fulleroimidazolidinones. Journal of Organic Chemistry, 2014, 79, 11774-11779.	3.2	12

#	Article	IF	Citations
109	BF ₃ ·Et ₂ O- or DMAP-Catalyzed Double Nucleophilic Substitution Reaction of Aziridinofullerenes with Sulfamides or Amidines. Journal of Organic Chemistry, 2014, 79, 11744-11749.	3.2	18
110	Amidoxime-functionalized magnetic mesoporous silica for selective sorption of U($<$ scp $>$ vi $<$ /scp $>$). RSC Advances, 2014, 4, 32710.	3.6	135
111	Fabrication of Fe/Fe ₃ C@porous carbon sheets from biomass and their application for simultaneous reduction and adsorption of uranium(<scp>vi</scp>) from solution. Inorganic Chemistry Frontiers, 2014, 1, 641.	6.0	86
112	Poly(amidoxime)-reduced graphene oxide composites as adsorbents for the enrichment of uranium from seawater. Science China Chemistry, 2014, 57, 1449-1458.	8.2	89
113	Two-dimensional Cr ₂ O ₃ and interconnected grapheneâ€"Cr ₂ O ₃ nanosheets: synthesis and their application in lithium storage. Journal of Materials Chemistry A, 2014, 2, 944-948.	10.3	48
114	Removal of uranium(vi) from aqueous solution by magnetic yolk–shell iron oxide@magnesium silicate microspheres. RSC Advances, 2014, 4, 5021.	3.6	49
115	PANI/GO as a super adsorbent for the selective adsorption of uranium(VI). Chemical Engineering Journal, 2014, 255, 604-612.	12.7	267
116	Synthesis of Alumina-Modified Cigarette Soot Carbon As an Adsorbent for Efficient Arsenate Removal. Industrial & Engineering Chemistry Research, 2014, 53, 16051-16060.	3.7	40
117	Polymer nanodots of graphitic carbon nitride as effective fluorescent probes for the detection of Fe3+ and Cu2+ ions. Nanoscale, 2014, 6, 4157.	5.6	295
118	Impact of Al ₂ O ₃ on the Aggregation and Deposition of Graphene Oxide. Environmental Science & Environment	10.0	144
119	The uptake of radionuclides from aqueous solution by poly(amidoxime) modified reduced graphene oxide. Chemical Engineering Journal, 2014, 254, 623-634.	12.7	112
120	Porous magnetic carbon sheets from biomass as an adsorbent for the fast removal of organic pollutants from aqueous solution. Journal of Materials Chemistry A, 2014, 2, 4391-4397.	10.3	262
121	Adsorption of Co(II), Ni(II), Pb(II) and U(VI) from Aqueous Solutions using Polyaniline/Graphene Oxide Composites. Korean Chemical Engineering Research, 2014, 52, 781-788.	0.2	12
122	Hierarchically grown CdS/\hat{l}_{\pm} -Fe2O3 heterojunction nanocomposites with enhanced visible-light-driven photocatalytic performance. Dalton Transactions, 2013, 42, 13417.	3.3	65
123	Superior adsorption capacity of hierarchical iron oxide@magnesium silicate magnetic nanorods for fast removal of organic pollutants from aqueous solution. Journal of Materials Chemistry A, 2013, 1, 11691.	10.3	133
124	Hypervalent Iodine Reagent Mediated Reaction of [60] Fullerene with Amines. Journal of Organic Chemistry, 2013, 78, 12257-12262.	3.2	28
125	In Situ Synthesis of Water-Soluble Magnetic Graphitic Carbon Nitride Photocatalyst and Its Synergistic Catalytic Performance. ACS Applied Materials & Samp; Interfaces, 2013, 5, 12735-12743.	8.0	290
126	Theoretical investigation of uranyl ion adsorption on hydroxylated \hat{I}^3 -Al2O3 surfaces. RSC Advances, 2013, 3, 19551.	3.6	37

#	Article	IF	Citations
127	Selective modification for polydimethylsiloxane chip by micro-plasma. Journal of Materials Science, 2013, 48, 1310-1314.	3.7	7
128	Facile Synthesis of Highâ€Quality Plasmaâ€Reduced Graphene Oxide with Ultrahigh 4,4′â€Dichlorobiphenyl Adsorption Capacity. Chemistry - an Asian Journal, 2013, 8, 225-231.	3.3	32
129	Efficient enrichment of uranium(vi) on amidoximated magnetite/graphene oxide composites. RSC Advances, 2013, 3, 18952.	3.6	147
130	Magnetic Fe3O4@NiO hierarchical structures: preparation and their excellent As(v) and Cr(vi) removal capabilities. RSC Advances, 2013, 3, 2754.	3.6	69
131	Efficient removal of cobalt from aqueous solution using \hat{l}^2 -cyclodextrin modified graphene oxide. RSC Advances, 2013, 3, 9514-9521.	3.6	51
132	Polyaniline nanorods dotted on graphene oxide nanosheets as a novel super adsorbent for Cr(vi). Dalton Transactions, 2013, 42, 7854.	3.3	151
133	Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Transactions, 2013, 42, 5266.	3.3	188
134	Highly active MnO2 nanosheet synthesis from graphene oxide templates and their application in efficient oxidative degradation of methylene blue. RSC Advances, 2013, 3, 12909.	3.6	89
135	Adsorption of naphthalene and its derivatives on magnetic graphene composites and the mechanism investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 422, 118-125.	4.7	160
136	Steam Plasma Jet Treatment of Phenol in Aqueous Solution at Atmospheric Pressure. Plasma Processes and Polymers, 2013, 10, 353-363.	3.0	29
137	Visibleâ€Light Photocatalytic Degradation of Methylene Blue Using SnO ₂ ∫αâ€Fe ₂ O ₃ Hierarchical Nanoheterostructures. ChemPlusChem, 2013, 78, 192-199.	2.8	69
138	Study on the acid–base surface property of the magnetite graphene oxide and its usage for the removal of radiostrontium from aqueous solution. Radiochimica Acta, 2013, 101, 785-794.	1.2	20
139	REGIOSELECTIVITY INVESTIGATION FOR THE PYROLYSIS OF XANTHATES: A COMPUTATIONAL STUDY. Journal of Theoretical and Computational Chemistry, 2013, 12, 1350064.	1.8	12
140	Poly(acrylic acid) grafted multiwall carbon nanotubes by plasma techniques for Co(II) removal from aqueous solution. Chemical Engineering Journal, 2012, 210, 475-481.	12.7	89
141	Synthesizing MnO ₂ nanosheets from graphene oxide templates for high performance pseudosupercapacitors. Chemical Science, 2012, 3, 433-437.	7.4	194
142	Removal of Cu(II) and Fulvic Acid by Graphene Oxide Nanosheets Decorated with Fe ₃ O ₄ Nanoparticles. ACS Applied Materials & Interfaces, 2012, 4, 4991-5000.	8.0	473
143	Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. RSC Advances, 2012, 2, 8821.	3.6	300
144	Simple Localization of Nanofiber Scaffolds via SUâ€8 Photoresist and Their Use for Parallel 3D Cellular Assays. Advanced Materials, 2012, 24, 2191-2195.	21.0	18

#	Article	IF	CITATIONS
145	Synthesis of [60] fullerene-fused thiolactams and thiaimidates. Tetrahedron Letters, 2012, 53, 1610-1612.	1.4	6
146	Microdroplet-based universal logic gates by electrorheological fluid. Soft Matter, 2011, 7, 7493.	2.7	42
147	Removal of Pb(ii) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Transactions, 2011, 40, 10945.	3.3	488
148	Few-Layered Graphene Oxide Nanosheets As Superior Sorbents for Heavy Metal Ion Pollution Management. Environmental Science & E	10.0	1,594
149	Enrich and seal radionuclides in magnetic agarose microspheres. Chemical Engineering Journal, 2011, 172, 892-897.	12.7	75
150	Kinetic and thermodynamic study of 1-naphthol adsorption from aqueous solution to sulfonated graphene nanosheets. Chemical Engineering Journal, 2011, 173, 185-190.	12.7	221
151	Removal of cobalt from aqueous solution by magnetic multiwalled carbon nanotube/iron oxide composites. Chemical Engineering Journal, 2011, 174, 126-133.	12.7	125
152	Design and fabrication of microfluidic mixer from carbonyl iron–PDMS composite membrane. Microfluidics and Nanofluidics, 2011, 10, 919-925.	2.2	63
153	Sulfonated Graphene for Persistent Aromatic Pollutant Management. Advanced Materials, 2011, 23, 3959-3963.	21.0	648
154	Effect of surfactants on Pb(II) adsorption from aqueous solutions using oxidized multiwall carbon nanotubes. Chemical Engineering Journal, 2011, 166, 551-558.	12.7	151
155	Facile fabrication, properties and application of novel thermo-responsive hydrogel. Smart Materials and Structures, 2011, 20, 075005.	3.5	9
156	Plasma-Induced Grafting of Cyclodextrin onto Multiwall Carbon Nanotube/Iron Oxides for Adsorbent Application. Journal of Physical Chemistry B, 2010, 114, 6779-6785.	2.6	267
157	Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials, 2010, 178, 505-516.	12.4	247
158	Sorption of Eu(III) on GMZ bentonite in the absence/presence of humic acid studied by batch and XAFS techniques. Science China Chemistry, 2010, 53, 1420-1428.	8.2	95
159	Influence of contact time, pH, soil humic/fulvic acids, ionic strength and temperature on sorption of U(VI) onto MX-80 bentonite. Journal of Radioanalytical and Nuclear Chemistry, 2010, 283, 253-259.	1.5	141
160	Response to the comments of Y. S. Ho to the paper "Influence of contact time, pH, soil humic/fulvic acids, ionic strength and temperature on sorption of U(VI) onto MX-80 bentonite―by Ren XM, Wang SW, Yang ST, and Li JX published in J. Radioanal. Nucl. Chem. 283 (2010) 253. Journal of Radioanalytical and Nuclear Chemistry, 2010, 285, 405-405.	1.5	0
161	Sorption of copper(II) onto super-adsorbent of bentonite–polyacrylamide composites. Journal of Hazardous Materials, 2010, 173, 661-668.	12.4	215
162	Adsorption of copper(II) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acids. Journal of Hazardous Materials, 2010, 178, 333-340.	12.4	272

#	Article	IF	Citations
163	Adsorption of Sr(II) and Eu(III) on Na-rectorite: Effect of pH, ionic strength, concentration and modelling. Radiochimica Acta, 2010, 98, 421-429.	1.2	37
164	Giant electrorheological fluid comprising nanoparticles: Carbon nanotube composite. Journal of Applied Physics, 2010, 107, 093507.	2.5	29
165	Logic control of microfluidics with smart colloid. Lab on A Chip, 2010, 10, 2869.	6.0	31
166	Copolymer solution-based "smart window― Applied Physics Letters, 2009, 95, 251907.	3.3	36
167	Removal of Eu(III) from aqueous solution using ZSM-5 zeolite. Microporous and Mesoporous Materials, 2009, 123, 1-9.	4.4	170
168	Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). Journal of Hazardous Materials, 2009, 164, 923-928.	12.4	439
169	Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: Effect of contact time, pH, foreign ions and PAA. Journal of Hazardous Materials, 2009, 166, 109-116.	12.4	394
170	Influence of pH, soil humic/fulvic acid, ionic strength, foreign ions and addition sequences on adsorption of Pb(II) onto GMZ bentonite. Journal of Hazardous Materials, 2009, 167, 44-51.	12.4	108
171	Adsorption of Eu(III) onto TiO2: Effect of pH, concentration, ionic strength and soil fulvic acid. Journal of Hazardous Materials, 2009, 168, 458-465.	12.4	183
172	Adsorption of Pb(II) on diatomite as affected via aqueous solution chemistry and temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 339, 159-166.	4.7	267
173	Effect of pH, ionic strength, foreign ions and temperature on the adsorption of Cu(II) from aqueous solution to GMZ bentonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 349, 195-201.	4.7	169
174	Sorption of Ni(II) on GMZ bentonite: Effects of pH, ionic strength, foreign ions, humic acid and temperature. Applied Radiation and Isotopes, 2009, 67, 1600-1608.	1.5	197
175	Plasma Induced Grafting Carboxymethyl Cellulose on Multiwalled Carbon Nanotubes for the Removal of UO ₂ ²⁺ from Aqueous Solution. Journal of Physical Chemistry B, 2009, 113, 860-864.	2.6	351
176	Sorption of Eu(III) on Attapulgite Studied by Batch, XPS, and EXAFS Techniques. Environmental Science & Eamp; Technology, 2009, 43, 5776-5782.	10.0	308
177	Synthesis of C60-fused tetrahydrothiophene derivatives via nucleophilic cycloaddition of thiocyanates. Organic and Biomolecular Chemistry, 2008, 6, 2995.	2.8	9
178	Novel Reactions of [60]Fullerene with Amino Acid Esters and Carbon Disulfide. Journal of Organic Chemistry, 2006, 71, 680-684.	3.2	30
179	Novel multicomponent reaction of [60] fullerene: the first example of 1,4-dipolar cycloaddition reaction in fullerene chemistry. Organic and Biomolecular Chemistry, 2006, 4, 4063.	2.8	40
180	Cycloaddition reactions of hydrofullerenes with cyano-substituted alkenes under basic conditions. New Journal of Chemistry, 2004, 28, 1043.	2.8	13