Francesca Romana Rizzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6072134/publications.pdf Version: 2024-02-01

		471509	434195
30	1,157	17	31
papers	citations	h-index	g-index
32	32	32	2213
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	MiRâ€142â€3p regulates synaptopathyâ€driven disease progression in multiple sclerosis. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	13
2	The BDNF Val66Met Polymorphism (rs6265) Modulates Inflammation and Neurodegeneration in the Early Phases of Multiple Sclerosis. Genes, 2022, 13, 332.	2.4	5
3	Interleukin 6 SNP rs1818879 Regulates Radiological and Inflammatory Activity in Multiple Sclerosis. Genes, 2022, 13, 897.	2.4	3
4	Preventive exercise attenuates IL-2-driven mood disorders in multiple sclerosis. Neurobiology of Disease, 2022, 172, 105817.	4.4	8
5	The microRNA let-7b-5p Is Negatively Associated with Inflammation and Disease Severity in Multiple Sclerosis. Cells, 2021, 10, 330.	4.1	24
6	Exercise protects from hippocampal inflammation and neurodegeneration in experimental autoimmune encephalomyelitis. Brain, Behavior, and Immunity, 2021, 98, 13-27.	4.1	22
7	Long-Term Depression of Striatal DA Release Induced by mGluRs via Sustained Hyperactivity of Local Cholinergic Interneurons. Frontiers in Cellular Neuroscience, 2021, 15, 798464.	3.7	1
8	Peripheral T cells from multiple sclerosis patients trigger synaptotoxic alterations in central neurons. Neuropathology and Applied Neurobiology, 2020, 46, 160-170.	3.2	17
9	â€~Prototypical' proinflammatory cytokine (IL-1) in multiple sclerosis: role in pathogenesis and therapeutic targeting. Expert Opinion on Therapeutic Targets, 2020, 24, 37-46.	3.4	16
10	Emerging Role of Extracellular Vesicles in the Pathophysiology of Multiple Sclerosis. International Journal of Molecular Sciences, 2020, 21, 7336.	4.1	39
11	Re-Examining the Role of TNF in MS Pathogenesis and Therapy. Cells, 2020, 9, 2290.	4.1	52
12	Central Modulation of Selective Sphingosine-1-Phosphate Receptor 1 Ameliorates Experimental Multiple Sclerosis. Cells, 2020, 9, 1290.	4.1	23
13	A Dynamic Splicing Program Ensures Proper Synaptic Connections in the Developing Cerebellum. Cell Reports, 2020, 31, 107703.	6.4	25
14	Inflammation-Associated Synaptic Alterations as Shared Threads in Depression and Multiple Sclerosis. Frontiers in Cellular Neuroscience, 2020, 14, 169.	3.7	35
15	Interleukin-6 Disrupts Synaptic Plasticity and Impairs Tissue Damage Compensation in Multiple Sclerosis. Neurorehabilitation and Neural Repair, 2019, 33, 825-835.	2.9	26
16	The striatal-enriched protein Rhes is a critical modulator of cocaine-induced molecular and behavioral responses. Scientific Reports, 2019, 9, 15294.	3.3	16
17	Immunomodulatory Effects of Exercise in Experimental Multiple Sclerosis. Frontiers in Immunology, 2019, 10, 2197.	4.8	33
18	Voluntary running wheel attenuates motor deterioration and brain damage in cuprizone-induced demyelination. Neurobiology of Disease, 2019, 129, 102-117.	4.4	42

#	Article	IF	CITATIONS
19	3,4-Methylenedioxymethamphetamine (MDMA) Alters Synaptic Dopamine Release in the Dorsal Striatum Through Nicotinic Receptors and DAT Inhibition. Neuroscience, 2018, 377, 69-76.	2.3	9
20	Tumor Necrosis Factor and Interleukin- $1 < i > \hat{l}^2 < /i > Modulate Synaptic Plasticity during Neuroinflammation. Neural Plasticity, 2018, 2018, 1-12.$	2.2	149
21	Laquinimod ameliorates excitotoxic damage by regulating glutamate re-uptake. Journal of Neuroinflammation, 2018, 15, 5.	7.2	25
22	Interplay Between Age and Neuroinflammation in Multiple Sclerosis: Effects on Motor and Cognitive Functions. Frontiers in Aging Neuroscience, 2018, 10, 238.	3.4	82
23	Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer's disease. Nature Communications, 2017, 8, 14727.	12.8	308
24	Interferon-Î ³ causes mood abnormalities by altering cannabinoid CB1 receptor function in the mouse striatum. Neurobiology of Disease, 2017, 108, 45-53.	4.4	11
25	A novel crosstalk within the endocannabinoid system controls GABA transmission in the striatum. Scientific Reports, 2017, 7, 7363.	3.3	46
26	Functional alterations of the dopaminergic and glutamatergic systems in spontaneous α-synuclein overexpressing rats. Experimental Neurology, 2017, 287, 21-33.	4.1	34
27	Evaluation of AZD1446 as a Therapeutic in DYT1 Dystonia. Frontiers in Systems Neuroscience, 2017, 11, 43.	2.5	8
28	Dopaminergic dysfunction is associated with IL-1β-dependent mood alterations in experimental autoimmune encephalomyelitis. Neurobiology of Disease, 2015, 74, 347-358.	4.4	42
29	Paradoxical Abatement of Striatal Dopaminergic Transmission by Cocaine and Methylphenidate. Journal of Biological Chemistry, 2014, 289, 264-274.	3.4	27
30	Electrophysiological and amperometric evidence that modafinil blocks the dopamine uptake transporter to induce behavioral activation. Neuroscience, 2013, 252, 118-124.	2.3	15