Zhaoli Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/607199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Copulaâ€Based Bivariate Return Period AnalysisÂand Its Implication to Hydrological DesignÂEvent. Journal of the American Water Resources Association, 2023, 59, 571-583.	2.4	2
2	Implication of climate variable selections on the uncertainty of reference crop evapotranspiration projections propagated from climate variables projections under climate change. Agricultural Water Management, 2022, 259, 107273.	5.6	12
3	Effects of different cropping systems on ammonia nitrogen load in a typical agricultural watershed of South China. Journal of Contaminant Hydrology, 2022, 246, 103963.	3.3	10
4	A novel spatial optimization approach for the cost-effectiveness improvement of LID practices based on SWMM-FTC. Journal of Environmental Management, 2022, 307, 114574.	7.8	27
5	Multi–Proxy Reconstruction of Drought Variability in China during the Past Two Millennia. Water (Switzerland), 2022, 14, 858.	2.7	1
6	Spatiotemporal variability of eventâ€based rainstorm: The perspective of rainfall pattern and concentration. International Journal of Climatology, 2022, 42, 6258-6276.	3.5	9
7	High effectiveness of GRACE data in daily-scale flood modeling: case study in the Xijiang River Basin, China. Natural Hazards, 2022, 113, 507-526.	3.4	4
8	Spatially continuous assessment of satellite-based precipitation products using triple collocation approach and discrete gauge observations via geographically weighted regression. Journal of Hydrology, 2022, 608, 127640.	5.4	7
9	Longâ€range precipitation forecast based on multipole and preceding fluctuations of sea surface temperature. International Journal of Climatology, 2022, 42, 8024-8039.	3.5	46
10	Regional asymmetry in the response of global vegetation growth to springtime compound climate events. Communications Earth & Environment, 2022, 3, .	6.8	19
11	Evaluating pluvial flood hazard for highly urbanised cities: a case study of the Pearl River Delta Region in China. Natural Hazards, 2021, 105, 1691-1719.	3.4	16
12	Applicability of two satellite-based precipitation products for assessing rainfall erosivity in China. Science of the Total Environment, 2021, 757, 143975.	8.0	33
13	Evaluation of TMPA 3B42-V7 Product on Extreme Precipitation Estimates. Remote Sensing, 2021, 13, 209.	4.0	11
14	A standardized index for assessing sub-monthly compound dry and hot conditions with application in China. Hydrology and Earth System Sciences, 2021, 25, 1587-1601.	4.9	80
15	Robust Meteorological Drought Prediction Using Antecedent SST Fluctuations and Machine Learning. Water Resources Research, 2021, 57, e2020WR029413.	4.2	39
16	Response of non-point source pollution to landscape pattern: case study in mountain-rural region, China. Environmental Science and Pollution Research, 2021, 28, 16602-16615.	5.3	12
17	Response of vegetation dynamics to drought at the eco-geographical region scale across China. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	1
18	Severe drought events inducing large decrease of net primary productivity in mainland China during 1982–2015. Science of the Total Environment, 2020, 703, 135541.	8.0	60

ZHAOLI WANG

#	Article	IF	CITATIONS
19	Flash droughts in the Pearl River Basin, China: Observed characteristics and future changes. Science of the Total Environment, 2020, 707, 136074.	8.0	50
20	Evident response of future hydropower generation to climate change. Journal of Hydrology, 2020, 590, 125385.	5.4	19
21	Reservoir-Induced Hydrological Alterations Using Ecologically Related Hydrologic Metrics: Case Study in the Beijiang River, China. Water (Switzerland), 2020, 12, 2008.	2.7	11
22	Temporal Variability of Drought in Nine Agricultural Regions of China and the Influence of Atmospheric Circulation. Atmosphere, 2020, 11, 990.	2.3	3
23	Reexamination of the Xie model and spatiotemporal variability in rainfall erosivity in mainland China from 1960 to 2018. Catena, 2020, 195, 104837.	5.0	26
24	Scenario-based flood risk assessment for urbanizing deltas using future land-use simulation (FLUS): Guangzhou Metropolitan Area as a case study. Science of the Total Environment, 2020, 739, 139899.	8.0	124
25	Flood Risk Assessment and Regionalization from Past and Future Perspectives at Basin Scale. Risk Analysis, 2020, 40, 1399-1417.	2.7	32
26	Changes in Extreme Precipitation across 30 Global River Basins. Water (Switzerland), 2020, 12, 1527.	2.7	3
27	A new framework for tracking flash drought events in space and time. Catena, 2020, 194, 104763.	5.0	49
28	Spatiotemporal variability of sunshine duration and influential climatic factors in mainland China during 1959–2017. International Journal of Climatology, 2020, 40, 6282-6300.	3.5	14
29	Toward Monitoring Short-Term Droughts Using a Novel Daily Scale, Standardized Antecedent Precipitation Evapotranspiration Index. Journal of Hydrometeorology, 2020, 21, 891-908.	1.9	108
30	Intensity and spatial heterogeneity of design rainstorm under nonstationarity and stationarity hypothesis across mainland China. Theoretical and Applied Climatology, 2019, 138, 1795-1808.	2.8	16
31	Spatiotemporal Variability of Actual Evapotranspiration and the Dominant Climatic Factors in the Pearl River Basin, China. Atmosphere, 2019, 10, 340.	2.3	7
32	Spatial Error Distribution and Error Cause Analysis of TMPA-3B42V7 Satellite-Based Precipitation Products over Mainland China. Water (Switzerland), 2019, 11, 1435.	2.7	0
33	Effects of largeâ€scale climate anomalies on crop reference evapotranspiration in the main grainâ€production area of China. International Journal of Climatology, 2019, 39, 1195-1212.	3.5	7
34	Spatiotemporal Variation of Annual Runoff and Sediment Load in the Pearl River during 1953–2017. Sustainability, 2019, 11, 5007.	3.2	7
35	Monitoring hydrological drought using long-term satellite-based precipitation data. Science of the Total Environment, 2019, 649, 1198-1208.	8.0	109
36	Drought monitoring utility of satellite-based precipitation products across mainland China. Journal of Hydrology, 2019, 568, 343-359.	5.4	147

ZHAOLI WANG

#	Article	IF	CITATIONS
37	Reconstruction of annual runoff since CE 1557 using tree-ring chronologies in the upper Lancang-Mekong River basin. Journal of Hydrology, 2019, 569, 771-781.	5.4	13
38	Drying tendency dominating the global grain production area. Clobal Food Security, 2018, 16, 138-149.	8.1	58
39	Integrating the social, hydrological and ecological dimensions of freshwater health: The Freshwater Health Index. Science of the Total Environment, 2018, 627, 304-313.	8.0	96
40	Climate change enhances the severity and variability of drought in the Pearl River Basin in South China in the 21st century. Agricultural and Forest Meteorology, 2018, 249, 149-162.	4.8	140
41	Increasing drought has been observed by SPEI_pm in Southwest China during 1962–2012. Theoretical and Applied Climatology, 2018, 133, 23-38.	2.8	27
42	A Two-stage Approach to Basin-scale Water Demand Prediction. Water Resources Management, 2018, 32, 401-416.	3.9	11
43	Drought-Induced Reduction in Net Primary Productivity across Mainland China from 1982 to 2015. Remote Sensing, 2018, 10, 1433.	4.0	40
44	Response of net primary production to land use and land cover change in mainland China since the late 1980s. Science of the Total Environment, 2018, 639, 237-247.	8.0	152
45	Surface Water Quality Evaluation Based on a Game Theory-Based Cloud Model. Water (Switzerland), 2018, 10, 510.	2.7	14
46	Quantitative Evaluation of the Impact of Climate Change and Human Activity on Runoff Change in the Dongjiang River Basin, China. Water (Switzerland), 2018, 10, 571.	2.7	39
47	Scenario-based projections of future urban inundation within a coupled hydrodynamic model framework: A case study in Dongguan City, China. Journal of Hydrology, 2017, 547, 428-442.	5.4	171
48	A regional frequency analysis of precipitation extremes in Mainland China with fuzzy câ€means and Lâ€moments approaches. International Journal of Climatology, 2017, 37, 429-444.	3.5	37
49	Does drought in China show a significant decreasing trend from 1961 to 2009?. Science of the Total Environment, 2017, 579, 314-324.	8.0	134
50	Evaluation and hydrologic validation of TMPA satellite precipitation product downstream of the Pearl River Basin, China. Hydrological Processes, 2017, 31, 4169-4182.	2.6	36
51	Trends in temperature extremes over nine integrated agricultural regions in China, 1961–2011. Theoretical and Applied Climatology, 2017, 129, 1279-1294.	2.8	20
52	Evaluation of the GPM IMERG satellite-based precipitation products and the hydrological utility. Atmospheric Research, 2017, 196, 151-163.	4.1	199
53	Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961–2013. Journal of Hydrology, 2017, 544, 97-108.	5.4	168
54	Observed changes in precipitation extremes across 11 basins in China during 1961–2013. International Journal of Climatology, 2016, 36, 2866-2885.	3.5	58

ZHAOLI WANG

#	Article	IF	CITATIONS
55	A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory. Natural Hazards, 2015, 77, 1243-1259.	3.4	164
56	Flood hazard risk assessment model based on random forest. Journal of Hydrology, 2015, 527, 1130-1141.	5.4	478
57	Set Pair Analysis Model Based on GIS to Evaluation for Flood Damage Risk. Procedia Engineering, 2012, 28, 196-201.	1.2	11