Giovanna Rassu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/607176/publications.pdf

Version: 2024-02-01

172207 197535 2,735 76 29 49 h-index citations g-index papers 78 78 78 3930 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer's therapy. Colloids and Surfaces B: Biointerfaces, 2017, 152, 296-301.	2.5	163
2	Nanoemulsions for "Nose-to-Brain―Drug Delivery. Pharmaceutics, 2019, 11, 84.	2.0	158
3	Indocyanine green delivery systems for tumour detection and treatments. Biotechnology Advances, 2016, 34, 768-789.	6.0	143
4	Nasal administration of Carbamazepine using chitosan microspheres: In vitro/in vivo studies. International Journal of Pharmaceutics, 2006, 307, 9-15.	2.6	142
5	Solid microparticles based on chitosan or methyl- \hat{l}^2 -cyclodextrin: A first formulative approach to increase the nose-to-brain transport of deferoxamine mesylate. Journal of Controlled Release, 2015, 201, 68-77.	4.8	116
6	Mucoadhesive microspheres for nasal administration of an antiemetic drug, metoclopramide: in-vitro/ex-vivo studiesâ€. Journal of Pharmacy and Pharmacology, 2010, 57, 287-294.	1.2	104
7	Solid lipid nanoparticles (SLN) as carriers for the topical delivery of econazole nitrate: in-vitro characterization, ex-vivo and in-vivo studies. Journal of Pharmacy and Pharmacology, 2010, 59, 1057-1064.	1.2	98
8	Composite chitosan/alginate hydrogel for controlled release of deferoxamine: A system to potentially treat iron dysregulation diseases. Carbohydrate Polymers, 2016, 136, 1338-1347.	5.1	93
9	Spray-dried microspheres based on methylpyrrolidinone chitosan as new carrier for nasal administration of metoclopramide. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68, 245-252.	2.0	72
10	Improvement of thymol properties by complexation with cyclodextrins: In vitro and in vivo studies. Carbohydrate Polymers, 2014, 102, 393-399.	5.1	71
11	Particulate formulations based on chitosan for nose-to-brain delivery of drugs. A review. Journal of Drug Delivery Science and Technology, 2016, 32, 77-87.	1.4	66
12	Intranasal Delivery of Genistein-Loaded Nanoparticles as a Potential Preventive System against Neurodegenerative Disorders. Pharmaceutics, 2019, 11, 8.	2.0	66
13	Frontal polymerization as a new method for developing drug controlled release systems (DCRS) based on polyacrylamide. European Polymer Journal, 2009, 45, 690-699.	2.6	61
14	Nasal chitosan microparticles target a zidovudine prodrug to brain HIV sanctuaries. Antiviral Research, 2015, 123, 146-157.	1.9	56
15	Preparation, In Vitro Characterization and Preliminary In Vivo Evaluation of Buccal Polymeric Films Containing Chlorhexidine. AAPS PharmSciTech, 2008, 9, 1153-1158.	1.5	54
16	Influence of polymeric microcarriers on the in vivo intranasal uptake of an anti-migraine drug for brain targeting. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 83, 174-183.	2.0	53
17	Natural collagenic skeleton of marine sponges in pharmaceutics: Innovative biomaterial for topical drug delivery. Materials Science and Engineering C, 2017, 70, 710-720.	3.8	53
18	Influence of Chitosan Glutamate on the in vivo Intranasal Absorption of Rokitamycin from Microspheres. Journal of Pharmaceutical Sciences, 2011, 100, 1488-1502.	1.6	51

#	Article	IF	Citations
19	Natural zeolites for pharmaceutical formulations: Preparation and evaluation of a clinoptilolite-based material. Microporous and Mesoporous Materials, 2016, 223, 58-67.	2.2	48
20	Nanotechnology-based rose Bengal: A broad-spectrum biomedical tool. Dyes and Pigments, 2021, 188, 109236.	2.0	45
21	New chitosan derivatives for the preparation of rokitamycin loaded microspheres designed for ocular or nasal administration. Journal of Pharmaceutical Sciences, 2009, 98, 4852-4865.	1.6	43
22	Transarterial chemoembolization of hepatocellular carcinoma – agents and drugs: an overview. Part 2. Expert Opinion on Drug Delivery, 2013, 10, 799-810.	2.4	41
23	Increasing protective activity of genistein by loading into transfersomes: A new potential adjuvant in the oxidative stress-related neurodegenerative diseases?. Phytomedicine, 2019, 52, 23-31.	2.3	38
24	Mucoadhesive microspheres for nasal administration of cyclodextrins. Journal of Drug Targeting, 2009, 17, 168-179.	2.1	37
25	Evaluation of solid lipid microparticles produced by spray congealing for topical application of econazole nitrate. Journal of Pharmacy and Pharmacology, 2010, 61, 559-567.	1.2	37
26	<p>Clinical Assessment of New Topical Cream Containing Two Essential Oils Combined with Tretinoin in the Treatment of Acne</p> . Clinical, Cosmetic and Investigational Dermatology, 2020, Volume 13, 233-239.	0.8	34
27	Chitosan Nanoparticles for Therapy and Theranostics of Hepatocellular Carcinoma (HCC) and Liver-Targeting. Nanomaterials, 2020, 10, 870.	1.9	33
28	The Role of Combined Penetration Enhancers in Nasal Microspheres on In Vivo Drug Bioavailability. Pharmaceutics, 2018, 10, 206.	2.0	31
29	Development of thermosensitive chitosan/glicerophospate injectablein situgelling solutions for potential application in intraoperative fluorescence imaging and local therapy of hepatocellular carcinoma: a preliminary study. Expert Opinion on Drug Delivery, 2015, 12, 1583-1596.	2.4	30
30	Propolis as lipid bioactive nano-carrier for topical nasal drug delivery. Colloids and Surfaces B: Biointerfaces, 2015, 136, 908-917.	2.5	29
31	Neuroprotective Effects of Engineered Polymeric Nasal Microspheres Containing Hydroxypropyl-β-cyclodextrin on β-Amyloid (1-42)–Induced Toxicity. Journal of Pharmaceutical Sciences, 2016, 105, 2372-2380.	1.6	29
32	Ketoprofen Spray-dried Microspheres Based on Eudragit® RS and RL: Study of the Manufacturing Parameters. Drug Development and Industrial Pharmacy, 2008, 34, 1178-1187.	0.9	27
33	Development of solid nanoparticles based on hydroxypropyl- $\langle i \rangle \hat{l}^2 \langle i \rangle$ -cyclodextrin aimed for the colonic transmucosal delivery of diclofenac sodium. Journal of Pharmacy and Pharmacology, 2011, 63, 472-482.	1.2	27
34	Transarterial chemoembolization of hepatocellular carcinoma. Agents and drugs: an overview. Part 1. Expert Opinion on Drug Delivery, 2013, 10, 679-690.	2.4	27
35	Lymph node metastases: importance of detection and treatment strategies. Expert Opinion on Drug Delivery, 2018, 15, 459-467.	2.4	26
36	Improving Dermal Delivery of Rose Bengal by Deformable Lipid Nanovesicles for Topical Treatment of Melanoma. Molecular Pharmaceutics, 2021, 18, 4046-4057.	2.3	25

#	Article	IF	Citations
37	Solid lipid nanoparticles with and without hydroxypropyl- \hat{l}^2 -cyclodextrin: a comparative study of nanoparticles designed for colonic drug delivery. Nanotechnology, 2012, 23, 095101.	1.3	23
38	Evaluation of the effect of hydroxypropyl- \hat{l}^2 -cyclodextrin on topical administration of milk thistle extract. Carbohydrate Polymers, 2013, 92, 40-47.	5.1	23
39	Encapsulation and modified-release of thymol from oral microparticles as adjuvant or substitute to current medications. Phytomedicine, 2014, 21, 1627-1632.	2.3	23
40	Aqueous injection of quercetin: An approach for confirmation of its direct in vivo cardiovascular effects. International Journal of Pharmaceutics, 2018, 541, 224-233.	2.6	23
41	Transmucosal Solid Lipid Nanoparticles to Improve Genistein Absorption via Intestinal Lymphatic Transport. Pharmaceutics, 2021, 13, 267.	2.0	23
42	Surface Thermodynamics of Mucoadhesive Dry Powder Formulation of Zolmitriptan. AAPS PharmSciTech, 2011, 12, 1186-1192.	1.5	22
43	Polymeric and Lipid Nanoparticles: Which Applications in Pediatrics?. Pharmaceutics, 2021, 13, 670.	2.0	21
44	Engineered polymeric microspheres obtained by multi-step method as potential systems for transarterial embolization and intraoperative imaging of HCC: Preliminary evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 117, 160-167.	2.0	20
45	Investigation of Cytotoxicity and Cell Uptake of Cationic Beta-Cyclodextrins as Valid Tools in Nasal Delivery. Pharmaceutics, 2020, 12, 658.	2.0	20
46	Bio-based topical system for enhanced salicylic acid delivery: preparation and performance of gels. Journal of Pharmacy and Pharmacology, 2016, 68, 999-1009.	1.2	19
47	Solid Lipid Nanoparticles as Formulative Strategy to Increase Oral Permeation of a Molecule Active in Multidrug-Resistant Tuberculosis Management. Pharmaceutics, 2020, 12, 1132.	2.0	19
48	From naturally-occurring neurotoxic agents to CNS shuttles for drug delivery. European Journal of Pharmaceutical Sciences, 2015, 74, 63-76.	1.9	18
49	Electrochemotherapy of Deep-Seated Tumors: State of Art and Perspectives as Possible "EPR Effect Enhancer―to Improve Cancer Nanomedicine Efficacy. Cancers, 2021, 13, 4437.	1.7	17
50	The effect of formulative parameters on the size and physical stability of SLN based on "green― components. Pharmaceutical Development and Technology, 2016, 21, 98-107.	1.1	15
51	Prolonged skin retention of clobetasol propionate by bio-based microemulsions: a potential tool for scalp psoriasis treatment. Drug Development and Industrial Pharmacy, 2018, 44, 398-406.	0.9	15
52	Biodegradable Microspheres as Intravitreal Delivery Systems for Prolonged Drug Release. What is their Eminence in the Nanoparticle Era?. Current Drug Delivery, 2018, 15, 930-940.	0.8	15
53	Nose-to-Brain Delivery of Antioxidants as a Potential Tool for the Therapy of Neurological Diseases. Pharmaceutics, 2020, 12, 1246.	2.0	15
54	Harnessing Stem Cells and Neurotrophic Factors with Novel Technologies in the Treatment of Parkinson's Disease. Current Stem Cell Research and Therapy, 2019, 14, 549-569.	0.6	13

#	Article	lF	Citations
55	Versatile Nasal Application of Cyclodextrins: Excipients and/or Actives?. Pharmaceutics, 2021, 13, 1180.	2.0	13
56	Engineered microparticles based on drug–polymer coprecipitates for ocular-controlled delivery of Ciprofloxacin: influence of technological parameters. Drug Development and Industrial Pharmacy, 2016, 42, 554-562.	0.9	12
57	Evaluation of solid lipid microparticles produced by spray congealing for topical application of econazole nitrate. Journal of Pharmacy and Pharmacology, 2009, 61, 559-567.	1.2	12
58	A New Sensitive Reversedâ€phase Highâ€performance Liquid Chromatography Method for the Quantitative Determination of Metoclopramide in Canine Plasma. Analytical Letters, 2008, 41, 767-778.	1.0	10
59	Poly (ethyl 2-cyanoacrylate) nanoparticles (PECA-NPs) as possible agents in tumor treatment. Colloids and Surfaces B: Biointerfaces, 2019, 177, 520-528.	2.5	10
60	Indocyanine Green Loaded Polymeric Nanoparticles: Physicochemical Characterization and Interaction Studies with Caco-2 Cell Line by Light and Transmission Electron Microscopy. Nanomaterials, 2020, 10, 133.	1.9	10
61	Hydroxypropyl- \hat{l}^2 -Cyclodextrin Formulated in Nasal Chitosan Microspheres as Candidate Therapeutic Agent in Alzheimer's Disease. Current Drug Delivery, 2018, 15, 746-748.	0.8	9
62	Antibacterial activity of Na-clinoptilolite against Helicobacter pylori: in-vitro tests, synergistic effect with amoxicillin and stability of the antibiotic formulated with the zeolite. Microporous and Mesoporous Materials, 2019, 288, 109592.	2.2	8
63	Polymeric nanomicelles based on inulin D \hat{l} ±-tocopherol succinate for the treatment of diabetic retinopathy. Journal of Drug Delivery Science and Technology, 2021, 61, 102286.	1.4	8
64	Crocetin as New Cross-Linker for Bioactive Sericin Nanoparticles. Pharmaceutics, 2021, 13, 680.	2.0	8
65	Mucoadhesive Drug Delivery Systems for Nose-to-Brain Targeting of Dopamine. Journal of Nanoneuroscience, 2012, 2, 47-55.	0.5	8
66	In situ forming biodegradable poly($\hat{l}\mu$ -caprolactone) microsphere systems: a challenge for transarterial embolization therapy. In vitro and preliminary ex vivo studies. Expert Opinion on Drug Delivery, 2017, 14, 453-465.	2.4	7
67	Bio-inspired apatite particles limit skin penetration of drugs for dermatology applications. Acta Biomaterialia, 2020, 111, 418-428.	4.1	7
68	Improvement of Antiamoebic Activity of Rokitamycin Loaded in Chitosan Microspheres. Open Drug Delivery Journal, 2008, 2, 38-43.	2.0	7
69	Nanoparticles in detection and treatment of lymph node metastases: an update from the point of view of administration routes. Expert Opinion on Drug Delivery, 2018, 15, 1117-1126.	2.4	6
70	Surfactant-Free Chitosan/Cellulose Acetate Phthalate Nanoparticles: An Attempt to Solve the Needs of Captopril Administration in Paediatrics. Pharmaceuticals, 2022, 15, 662.	1.7	6
71	Novel Utilization of Therapeutic Coatings Based on Infiltrated Encapsulated Rose Bengal Microspheres in Porous Titanium for Implant Applications. Pharmaceutics, 2022, 14, 1244.	2.0	5
72	Identifying a Role of Red and White Wine Extracts in Counteracting Skin Aging: Effects of Antioxidants on Fibroblast Behavior. Antioxidants, 2021, 10, 227.	2.2	4

#	ARTICLE	IF	CITATIONS
73	Synthesis of 2â€(Quinoxalinâ€2â€ylaminoâ€benzotriazolyl) Pentanedioic Derivatives as Potential Antiâ€Folate Agents. Journal of Heterocyclic Chemistry, 2016, 53, 1721-1737.	1.4	3
74	Studies of Technological Parameters Influencing the Protein-Polymeric Nanoparticles Adsorption Process for Transmucosal Administration. Current Nanoscience, 2012, 8, 819-829.	0.7	2
75	Cellulose acetate phthalate-chitosan based nanoparticles for transdermal delivery of captopril in pediatric patients., 0,,.		0
76	Lipid-based nanocarriers for Rose Bengal dermal delivery: a promising approach in melanoma treatment. , 0 , , .		0