Doo-Man Chun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6071542/publications.pdf

Version: 2024-02-01

91 3,240 27 54 papers citations h-index 91 91 3601

times ranked

docs citations

all docs

citing authors

#	Article	IF	CITATIONS
1	Waterproof and Wear-Resistant Surface Treatment on Printed Parts of Polyamide 12 (PA12) by Selective Laser Sintering Using a Large Pulsed Electron Beam. International Journal of Precision Engineering and Manufacturing - Green Technology, 2023, 10, 71-83.	2.7	6
2	One-step mechanical exfoliation and deposition of layered materials (graphite, MoS2, and BN) by vacuum-kinetic spray process. Vacuum, 2022, 196, 110732.	1.6	7
3	Kinetically induced one-step heterostructure formation of Co3O4-Ni(OH)2-graphene ternary nanocomposites to enhance oxygen evolution reactions. Journal of Alloys and Compounds, 2022, 906, 164159.	2.8	9
4	Fabrication of large-scale, flexible, and robust superhydrophobic composite films using hydrophobic fumed silica nanoparticles and polydimethylsiloxane. Polymer, 2022, 244, 124630.	1.8	12
5	Fabrication of robust superhydrophobic micro-nano hierarchical surface structure using compression molding with carbon soot nanoparticles and thermoplastic polymer. Polymer, 2022, 251, 124893.	1.8	6
6	Ultrafast and Eco-Friendly Fabrication Process for Robust, Repairable Superhydrophobic Metallic Surfaces with Tunable Water Adhesion. ACS Applied Materials & 1, 2022, 14, 28348-28358.	4.0	17
7	Nanosized Co3O4–MoS2 heterostructure electrodes for improving the oxygen evolution reaction in an alkaline medium. Journal of Alloys and Compounds, 2021, 853, 156946.	2.8	33
8	Evaluation of Electrochromic Device Influenced by Various Formulation of Solid Polymer Electrolyte. International Journal of Precision Engineering and Manufacturing, 2021, 22, 189-199.	1.1	7
9	Robust Superhydrophobic Surface on Polypropylene with Thick Hydrophobic Silica Nanoparticle-Coated Films Prepared by Facile Compression Molding. Energies, 2021, 14, 3155.	1.6	4
10	Room-temperature deposition of ZnO-graphene nanocomposite hybrid photocatalysts for improved visible-light-driven degradation of methylene blue. Ceramics International, 2021, 47, 12812-12825.	2.3	40
11	Facile one-step deposition of ZnO-graphene nanosheets hybrid photoanodes for enhanced photoelectrochemical water splitting. Journal of Alloys and Compounds, 2021, 870, 159430.	2.8	17
12	Heterostructured Mn3O4-2D material nanosheets: One-step vacuum kinetic spray deposition and non-enzymatic H2O2 sensing. Ceramics International, 2021, 47, 35111-35123.	2.3	7
13	Green manufacturing of extreme wettability contrast surfaces with superhydrophilic and superhydrophobic patterns on aluminum. Journal of Materials Processing Technology, 2021, 297, 117245.	3.1	27
14	One Million Cycle Durability Test of Electrochromic Devices Using Charge Balance Control. International Journal of Precision Engineering and Manufacturing - Green Technology, 2020, 7, 195-203.	2.7	2
15	Effect of pulsed electric current on electrically assisted indentation for surface texturing. International Journal of Advanced Manufacturing Technology, 2020, 111, 283-293.	1.5	6
16	ZnO decorated polydimethylsiloxane sponges as photocatalysts for effective removal of methylene blue dye. Materials Chemistry and Physics, 2020, 255, 123589.	2.0	19
17	Facile one-step deposition of Co3O4-MoS2 nanocomposites using a vacuum kinetic spray process for non-enzymatic H2O2 sensing. Surfaces and Interfaces, 2020, 21, 100748.	1.5	9
18	Simple and fast surface modification of nanosecond-pulse laser-textured stainless steel for robust superhydrophobic surfaces. CIRP Annals - Manufacturing Technology, 2020, 69, 525-528.	1.7	38

#	Article	IF	Citations
19	Direct laser patterning for transparent superhydrophobic glass surfaces without any chemical coatings. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	12
20	Fabrication of efficient nanostructured Co3O4-Graphene bifunctional catalysts: Oxygen evolution, hydrogen evolution, and H2O2 sensing. Ceramics International, 2020, 46, 23479-23498.	2.3	24
21	One-step deposition of a Ni(OH)2-graphene hybrid prepared by vacuum kinetic spray for high energy density hybrid supercapacitor. Materials Chemistry and Physics, 2020, 244, 122701.	2.0	27
22	Composition dependent electrocatalytic activity of Ni(OH)2-graphene hybrid catalyst deposited by one-step vacuum kinetic spray technique. Materials Chemistry and Physics, 2020, 244, 122675.	2.0	16
23	Study of Corrosion Resistance of Superhydrophobic Aluminum Alloy Surface Fabricated by Laser Texturing and Heat Treatment. Transactions of the Korean Society of Mechanical Engineers, A, 2020, 44, 187-197.	0.1	2
24	All-Solid-State Supercapacitor Based on MoS2–Graphite Composite Prepared by the Vacuum Kinetic Spray Method. Journal of Thermal Spray Technology, 2019, 28, 963-973.	1.6	7
25	Deposition mechanism of graphene flakes directly from graphite particles in the kinetic spray process studied using molecular dynamics simulation. Computational Materials Science, 2019, 169, 109091.	1.4	16
26	Deposition of Ni(OH)2 on nickel substrate using vacuum kinetic spray and its application to high-performance supercapacitor. Journal of Materials Science: Materials in Electronics, 2019, 30, 17481-17490.	1.1	4
27	Photocatalytic performance of few-layer Graphene/WO3 thin films prepared by a nano-particle deposition system. Materials Chemistry and Physics, 2019, 226, 141-150.	2.0	25
28	Pattern transformation induced by elastic instability of metallic porous structures. Computational Materials Science, 2019, 157, 17-24.	1.4	11
29	Fabrication of a superhydrophobic surface using a fused deposition modeling (FDM) 3D printer with poly lactic acid (PLA) filament and dip coating with silica nanoparticles. Applied Surface Science, 2019, 467-468, 979-991.	3.1	92
30	Effect of Heat Treatment Temperature on the Wettability Transition from Hydrophilic to Superhydrophobic on Laserâ€Ablated Metallic Surfaces. Advanced Engineering Materials, 2018, 20, 1701086.	1.6	68
31	Joining and fabrication of metal matrix composites by friction stir welding/processing. International Journal of Precision Engineering and Manufacturing - Green Technology, 2018, 5, 151-172.	2.7	30
32	Effect of particle size and amorphous phase on the electrochromic properties of kinetically deposited WO3 films. Solar Energy Materials and Solar Cells, 2018, 177, 44-50.	3.0	54
33	Investigation of dry-deposited ion storage layers using various oxide particles to enhance electrochromic performance. Solar Energy Materials and Solar Cells, 2018, 174, 599-606.	3.0	26
34	Control of laser-ablated aluminum surface wettability to superhydrophobic or superhydrophilic through simple heat treatment or water boiling post-processing. Applied Surface Science, 2018, 435, 974-982.	3.1	121
35	Controlling the Wetting Properties of Superhydrophobic Titanium Surface Fabricated by UV Nanosecond-Pulsed Laser and Heat Treatment. Nanomaterials, 2018, 8, 766.	1.9	38
36	Electrochemical Performance of Few-Layer Graphene Nano-Flake Supercapacitors Prepared by the Vacuum Kinetic Spray Method. Coatings, 2018, 8, 302.	1.2	24

#	Article	IF	Citations
37	Effect of Multiwalled Carbon Nanotubes on the Mechanical Properties of Carbon Fiber-Reinforced Polyamide-6/Polypropylene Composites for Lightweight Automotive Parts. Materials, 2018, 11, 429.	1.3	53
38	Investigation of Varying Particle Sizes of Dry-Deposited WO3 Particles in Relation to Performance of Electrochromic Cell. International Journal of Precision Engineering and Manufacturing - Green Technology, 2018, 5, 409-414.	2.7	10
39	Fabrication of un-coated transparent superhydrophobic sapphire surface using laser surface ablation and heat treatment. CIRP Annals - Manufacturing Technology, 2018, 67, 571-574.	1.7	19
40	Microstructural Control of the Electrochromic and Ion Storage Layers on the Performance of an Electrochromic Device Fabricated by the Kinetic Spray Technique. International Journal of Precision Engineering and Manufacturing - Green Technology, 2018, 5, 231-238.	2.7	9
41	Preface for the Special Issue of Sustainable Manufacturing in 4th Industrial Revolution. International Journal of Precision Engineering and Manufacturing - Green Technology, 2018, 5, 457-457.	2.7	4
42	Kinetic spraying of silver nanowire blended graphite powder to fabricate transparent conductive electrode and their application in electrochromic device. Applied Surface Science, 2018, 456, 19-24.	3.1	8
43	Fast wettability transition from hydrophilic to superhydrophobic laser-textured stainless steel surfaces under low-temperature annealing. Applied Surface Science, 2017, 409, 232-240.	3.1	122
44	Combination of nano-particle deposition system and friction stir spot welding for fabrication of carbon/aluminum metal matrix composite joints of dissimilar aluminum alloys. CIRP Annals - Manufacturing Technology, 2017, 66, 261-264.	1.7	21
45	Formation of few-layer graphene flake structures from graphite particles during thin film coating using dry spray deposition method. Thin Solid Films, 2017, 622, 34-40.	0.8	24
46	Fabrication of transparent conductive tri-composite film for electrochromic application. Applied Surface Science, 2017, 425, 1006-1013.	3.1	20
47	Substrate-dependent deposition behavior of graphite particles dry-sprayed at room temperature using a nano-particle deposition system. Surface and Coatings Technology, 2017, 309, 172-178.	2.2	19
48	Fabrication of an Anisotropic Superhydrophobic Polymer Surface Using Compression Molding and Dip Coating. Coatings, 2017, 7, 194.	1.2	16
49	Fast fabrication of superhydrophobic metallic surface using nanosecond laser texturing and low-temperature annealing. CIRP Annals - Manufacturing Technology, 2016, 65, 519-522.	1.7	115
50	From design for manufacturing (DFM) to manufacturing for design (MFD) via hybrid manufacturing and smart factory: A review and perspective of paradigm shift. International Journal of Precision Engineering and Manufacturing - Green Technology, 2016, 3, 209-222.	2.7	59
51	Effect of polypropylene on the mechanical properties and water absorption of carbon-fiber-reinforced-polyamide-6/polypropylene composite. Composite Structures, 2016, 150, 240-245.	3.1	70
52	Laser Printing of Superhydrophobic Patterns from Mixtures of Hydrophobic Silica Nanoparticles and Toner Powder. Scientific Reports, 2016, 6, 36735.	1.6	28
53	A review on fabrication processes for electrochromic devices. International Journal of Precision Engineering and Manufacturing - Green Technology, 2016, 3, 397-421.	2.7	70
54	Study of electrically-assisted indentation for surface texturing. International Journal of Precision Engineering and Manufacturing - Green Technology, 2016, 3, 161-165.	2.7	19

#	Article	IF	CITATIONS
55	Photocatalytic properties of Au/Fe 2 O 3 nano-composites prepared by co-precipitation. Advanced Powder Technology, 2016, 27, 130-138.	2.0	20
56	A review of electrically-assisted manufacturing. International Journal of Precision Engineering and Manufacturing - Green Technology, 2015, 2, 365-376.	2.7	108
57	Feasibility of electrically assisted progressive forging of aluminum 6061-T6 alloy. CIRP Annals - Manufacturing Technology, 2015, 64, 277-280.	1.7	27
58	Effect of a piston hole under the slip control condition of the lock-up clutch in a torque converter. International Journal of Automotive Technology, 2015, 16, 139-144.	0.7	5
59	Transparency and superhydrophobicity of cone-shaped micropillar array textured polydimethylsiloxane. International Journal of Precision Engineering and Manufacturing, 2015, 16, 1347-1353.	1.1	25
60	α-Fe 2 O 3 as a photocatalytic material: A review. Applied Catalysis A: General, 2015, 498, 126-141.	2.2	760
61	Multilayer deposition of ceramic and metal at room temperature using nanoparticle deposition system (NPDS) and planarization process. International Journal of Advanced Manufacturing Technology, 2014, 72, 41-46.	1.5	20
62	Geometric study of transparent superhydrophobic surfaces of molded and grid patterned polydimethylsiloxane (PDMS). Applied Surface Science, 2014, 314, 530-536.	3.1	60
63	Research advancement of green technologies. International Journal of Precision Engineering and Manufacturing, 2014, 15, 973-977.	1.1	31
64	Fabrication of transparent superhydrophobic surface on thermoplastic polymer using laser beam machining and compression molding for mass production. CIRP Annals - Manufacturing Technology, 2014, 63, 525-528.	1.7	57
65	Perspective to green manufacturing and applications. International Journal of Precision Engineering and Manufacturing, 2013, 14, 873-874.	1.1	36
66	Energy saving in line patterning using pulse laser by reducing overlapping rate with rectangular beam shape. International Journal of Precision Engineering and Manufacturing, 2013, 14, 985-988.	1.1	3
67	Precise measurement of the transverse piezoelectric coefficient for thin films on anisotropic substrate. Journal of Applied Physics, 2013, 113, .	1.1	39
68	Change of Mechanical Properties of Injection-Molded Glass-Fiber-Reinforced Plastic (GFRP) According to Temperature and Water Absorption for Vehicle Weight Reduction. Transactions of the Korean Society of Mechanical Engineers, A, 2013, 37, 199-204.	0.1	2
69	Dry-Spray Deposition of TiO ₂ for a Flexible Dye-Sensitized Solar Cell (DSSC) Using a Nanoparticle Deposition System (NPDS). Journal of Nanoscience and Nanotechnology, 2012, 12, 3384-3388.	0.9	11
70	Nano-particle deposition system (NPDS): Low energy solvent-free dry spray process for direct patterning of metals and ceramics at room temperature. International Journal of Precision Engineering and Manufacturing, 2012, 13, 1107-1112.	1.1	40
71	Laser-assisted nano particle deposition system and its application for dye sensitized solar cell fabrication. CIRP Annals - Manufacturing Technology, 2012, 61, 575-578.	1.7	18
72	Effect of stand-off distance for cold gas spraying of fine ceramic particles (<5î½m) under low vacuum and room temperature using nano-particle deposition system (NPDS). Surface and Coatings Technology, 2012, 206, 2125-2132.	2.2	56

#	Article	lF	CITATIONS
73	Nanoscale hybrid manufacturing process by nano particle deposition system (NPDS) and focused ion beam (FIB). CIRP Annals - Manufacturing Technology, 2011, 60, 583-586.	1.7	26
74	Capacity estimation of torque converters with piston holes using the response surface method and an artificial neural network. International Journal of Automotive Technology, 2011, 12, 273-280.	0.7	2
75	Room temperature deposition of TiO2 using nano particle deposition system (NPDS): Application to dye-sensitized solar cell (DSSC). International Journal of Precision Engineering and Manufacturing, 2011, 12, 749-752.	1.1	23
76	Deposition mechanism of dry sprayed ceramic particles at room temperature using a nano-particle deposition system. Acta Materialia, 2011, 59, 2693-2703.	3.8	139
77	Nano/micro particle beam for ceramic deposition and mechanical etching. Physica Scripta, 2010, T139, 014047.	1.2	6
78	Coating of Ni powders through micronozzle in a nano particle deposition system. Metals and Materials International, 2010, 16, 465-467.	1.8	11
79	Computer-aided environmental design system for the energy-using product (EuP) directive. International Journal of Precision Engineering and Manufacturing, 2010, 11, 397-406.	1.1	17
80	COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF FABRICATED MICRONOZZLE FOR SUPERSONIC PARTICLE DEPOSITION. Surface Review and Letters, 2010, 17, 45-49.	0.5	0
81	DEPOSITION OF Al₂O₃ POWDERS USING NANO-PARTICLE DEPOSITION SYSTEM. Surface Review and Letters, 2010, 17, 189-193.	0.5	21
82	Design of Repeat-Antenna Package for Mobile Communication Made of Ferrite-Loaded Glass-Fabric/Epoxy Composites. Advanced Composite Materials, 2010, 19, 215-228.	1.0	1
83	Nickel Line Patterning Using Silicon Supersonic Micronozzle Integrated with a Nanoparticle Deposition System. Japanese Journal of Applied Physics, 2010, 49, 05EC09.	0.8	21
84	SURFACE MODIFICATION OF POLYETHYLENE (PE) BY THE DEPOSITION OF TITANIUM DIOXIDE (TiO ₂) NANOPARTICLES TO ENHANCE THE PHOTOCATALYTIC ACTIVITIES. Surface Review and Letters, 2009, 16, 259-263.	0.5	7
85	Durability improvement of automotive V-belt pulley. International Journal of Automotive Technology, 2009, 10, 73-77.	0.7	4
86	Nanoparticle Deposition of Al ₂ O ₃ Powders on Various Substrates. Materials Transactions, 2009, 50, 2680-2684.	0.4	8
87	TiO 2 coating on metal and polymer substrates by nano-particle deposition system (NPDS). CIRP Annals - Manufacturing Technology, 2008, 57, 551-554.	1.7	76
88	Nano particle deposition system (NPDS) for ceramic and metal coating at room temperature and low vacuum condition. , 2008, , .		8
89	Web-Based Material Database for Material Selection and its Application Programming Interface (API) for CAD. Key Engineering Materials, 2007, 345-346, 1593-1596.	0.4	2
90	Material Properties of Thick Aluminum Coating Made by Cold Gas Dynamic Spray Deposition. Key Engineering Materials, 2007, 345-346, 1097-1100.	0.4	0

ARTICLE IF CITATIONS

91 Fatigue Life Analysis of Automotive V-belt Pulley., 2007,,. 1