William B Dobyns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6071539/publications.pdf Version: 2024-02-01

WILLIAM B DORVNS

#	Article	IF	CITATIONS
1	Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel. Nature Genetics, 1997, 15, 62-69.	21.4	1,606
2	lsolation of a Miller–Dicker lissencephaly gene containing G protein β-subunit-like repeats. Nature, 1993, 364, 717-721.	27.8	1,036
3	doublecortin, a Brain-Specific Gene Mutated in Human X-Linked Lissencephaly and Double Cortex Syndrome, Encodes a Putative Signaling Protein. Cell, 1998, 92, 63-72.	28.9	1,007
4	A developmental and genetic classification for malformations of cortical development: update 2012. Brain, 2012, 135, 1348-1369.	7.6	849
5	Mutations in filamin 1 Prevent Migration of Cerebral Cortical Neurons in Human Periventricular Heterotopia. Neuron, 1998, 21, 1315-1325.	8.1	811
6	Characterizing the Pattern of Anomalies in Congenital Zika Syndrome for Pediatric Clinicians. JAMA Pediatrics, 2017, 171, 288.	6.2	746
7	A developmental and genetic classification for malformations of cortical development. Neurology, 2005, 65, 1873-1887.	1.1	711
8	Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nature Genetics, 2002, 32, 359-369.	21.4	647
9	Mutations in the O-Mannosyltransferase Gene POMT1 Give Rise to the Severe Neuronal Migration Disorder Walker-Warburg Syndrome. American Journal of Human Genetics, 2002, 71, 1033-1043.	6.2	636
10	Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nature Genetics, 1995, 9, 358-364.	21.4	623
11	De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nature Genetics, 2012, 44, 934-940.	21.4	621
12	Recurrent 16p11.2 microdeletions in autism. Human Molecular Genetics, 2007, 17, 628-638.	2.9	614
13	G Protein-Coupled Receptor-Dependent Development of Human Frontal Cortex. Science, 2004, 303, 2033-2036.	12.6	498
14	Mutations in the Na+/K+-ATPase α3 Gene ATP1A3 Are Associated with Rapid-Onset Dystonia Parkinsonism. Neuron, 2004, 43, 169-175.	8.1	466
15	Diagnostic criteria for Walkerâ€Warburg syndrome. American Journal of Medical Genetics Part A, 1989, 32, 195-210.	2.4	439
16	Lymphatic and Other Vascular Malformative/Overgrowth Disorders AreÂCaused by Somatic Mutations in PIK3CA. Journal of Pediatrics, 2015, 166, 1048-1054.e5.	1.8	429
17	<i>>PIK3CA</i> â€related overgrowth spectrum (PROS): Diagnostic and testing eligibility criteria, differential diagnosis, and evaluation. American Journal of Medical Genetics, Part A, 2015, 167, 287-295.	1.2	399
18	Malformations of cortical development: clinical features and genetic causes. Lancet Neurology, The, 2014, 13, 710-726.	10.2	382

#	Article	IF	CITATIONS
19	14-3-3ε is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller–Dieker syndrome. Nature Genetics, 2003, 34, 274-285.	21.4	374
20	Description of 13 Infants Born During October 2015–January 2016 With Congenital Zika Virus Infection Without Microcephaly at Birth — Brazil. Morbidity and Mortality Weekly Report, 2016, 65, 1343-1348.	15.1	368
21	Mutations in the Cilia Gene ARL13B Lead to the Classical Form of Joubert Syndrome. American Journal of Human Genetics, 2008, 83, 170-179.	6.2	352
22	Consensus Paper: Cerebellar Development. Cerebellum, 2016, 15, 789-828.	2.5	337
23	A Drosophila Genetic Resource of Mutants to Study Mechanisms Underlying Human Genetic Diseases. Cell, 2014, 159, 200-214.	28.9	322
24	Periventricular heterotopia: phenotypic heterogeneity and correlation with Filamin A mutations. Brain, 2006, 129, 1892-1906.	7.6	315
25	Point Mutations and an Intragenic Deletion in LIS1, the Lissencephaly Causative Gene in Isolated Lissencephaly Sequence and Miller-Dieker Syndrome. Human Molecular Genetics, 1997, 6, 157-164.	2.9	297
26	Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation. Human Mutation, 2004, 23, 147-159.	2.5	293
27	Lissencephaly. JAMA - Journal of the American Medical Association, 1993, 270, 2838.	7.4	287
28	PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia. Brain, 2015, 138, 1613-1628.	7.6	286
29	Lissencephaly and the molecular basis of neuronal migration. Human Molecular Genetics, 2003, 12, 89R-96.	2.9	274
30	Infantile hydrocephalus: A review of epidemiology, classification and causes. European Journal of Medical Genetics, 2014, 57, 359-368.	1.3	273
31	Novel Submicroscopic Chromosomal Abnormalities Detected in Autism Spectrum Disorder. Biological Psychiatry, 2008, 63, 1111-1117.	1.3	268
32	Spinocerebellar ataxia type 6: Gazeâ€evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Annals of Neurology, 1997, 42, 933-950.	5.3	267
33	A developmental and genetic classification for midbrain-hindbrain malformations. Brain, 2009, 132, 3199-3230.	7.6	262
34	Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nature Genetics, 2010, 42, 1015-1020.	21.4	259
35	WDR62 is associated with the spindle pole and is mutated in human microcephaly. Nature Genetics, 2010, 42, 1010-1014.	21.4	255
36	SRD5A3 Is Required for Converting Polyprenol to Dolichol and Is Mutated in a Congenital Glycosylation Disorder. Cell, 2010, 142, 203-217.	28.9	253

#	Article	IF	CITATIONS
37	Mutations of CASK cause an X-linked brain malformation phenotype with microcephaly and hypoplasia of the brainstem and cerebellum. Nature Genetics, 2008, 40, 1065-1067.	21.4	252
38	The phenotypic spectrum of rapid-onset dystonia-parkinsonism (RDP) and mutations in the ATP1A3 gene. Brain, 2007, 130, 828-835.	7.6	251
39	Practice Parameter: Evaluation of the child with microcephaly (an evidence-based review) [RETIRED]. Neurology, 2009, 73, 887-897.	1.1	244
40	Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nature Medicine, 2016, 22, 1256-1259.	30.7	241
41	De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome. Nature Genetics, 2012, 44, 440-444.	21.4	237
42	FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation. Nature Genetics, 2009, 41, 1037-1042.	21.4	234
43	Association of <i>MTOR</i> Mutations With Developmental Brain Disorders, Including Megalencephaly, Focal Cortical Dysplasia, and Pigmentary Mosaicism. JAMA Neurology, 2016, 73, 836.	9.0	234
44	The NPHP1 Gene Deletion Associated with Juvenile Nephronophthisis Is Present in a Subset of Individuals with Joubert Syndrome. American Journal of Human Genetics, 2004, 75, 82-91.	6.2	228
45	Abnormal development of the human cerebral cortex: genetics, functional consequences and treatment options. Trends in Neurosciences, 2008, 31, 154-162.	8.6	227
46	The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis. Journal of Medical Genetics, 2011, 48, 396-406.	3.2	220
47	Syndromes with lissencephaly. I: Millerdieker and Norman-Roberts syndromes and isolated lissencephaly. American Journal of Medical Genetics Part A, 1984, 18, 509-526.	2.4	218
48	Neonatal adrenoleukodystrophy: New cases, biochemical studies, and differentiation from Zellweger and related peroxisomal polydystrophy syndromes. American Journal of Medical Genetics Part A, 1986, 23, 869-901.	2.4	216
49	Refinement of a 400-kb Critical Region Allows Genotypic Differentiation between Isolated Lissencephaly, Miller-Dieker Syndrome, and Other Phenotypes Secondary to Deletions of 17p13.3. American Journal of Human Genetics, 2003, 72, 918-930.	6.2	215
50	Clinical and imaging heterogeneity of polymicrogyria: a study of 328 patients. Brain, 2010, 133, 1415-1427.	7.6	215
51	Molar tooth sign of the midbrain-hindbrain junction: Occurrence in multiple distinct syndromes. American Journal of Medical Genetics Part A, 2004, 125A, 125-134.	2.4	213
52	ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome. Nature Genetics, 2012, 44, 575-580.	21.4	212
53	Heterozygous deletion of the linked genes ZIC1 and ZIC4 is involved in Dandy-Walker malformation. Nature Genetics, 2004, 36, 1053-1055.	21.4	206
54	Human malformations of the midbrain and hindbrain: review and proposed classification scheme. Molecular Genetics and Metabolism, 2003, 80, 36-53.	1,1	205

#	Article	IF	CITATIONS
55	Mutations of the catalytic subunit of RAB3GAP cause Warburg Micro syndrome. Nature Genetics, 2005, 37, 221-224.	21.4	201
56	Clinical, neuroradiological and genetic findings in pontocerebellar hypoplasia. Brain, 2011, 134, 143-156.	7.6	200
57	<i>GRIN2B</i> encephalopathy: novel findings on phenotype, variant clustering, functional consequences and treatment aspects. Journal of Medical Genetics, 2017, 54, 460-470.	3.2	190
58	Megalencephalyâ€capillary malformation (MCAP) and megalencephalyâ€polydactylyâ€polymicrogyriaâ€hydrocephalus (MPPH) syndromes: Two closely related disorders of brain overgrowth and abnormal brain and body morphogenesis. American Journal of Medical Genetics, Part A, 2012, 158A, 269-291.	1.2	188
59	Targeted loss of Arx results in a developmental epilepsy mouse model and recapitulates the human phenotype in heterozygous females. Brain, 2009, 132, 1563-1576.	7.6	178
60	A Revision of the Lissencephaly and Miller-Dieker Syndrome Critical Regions in Chromosome 17p13.3. Human Molecular Genetics, 1997, 6, 147-155.	2.9	176
61	TUBA1A mutations cause wide spectrum lissencephaly (smooth brain) and suggest that multiple neuronal migration pathways converge on alpha tubulins. Human Molecular Genetics, 2010, 19, 2817-2827.	2.9	176
62	Malformations of cortical development and epilepsy. Dialogues in Clinical Neuroscience, 2008, 10, 47-62.	3.7	176
63	Characterization of mutations in the genedoublecortin in patients with double cortex syndrome. Annals of Neurology, 1999, 45, 146-153.	5.3	175
64	Mutations in B3GALNT2 Cause Congenital Muscular Dystrophy and Hypoglycosylation of α-Dystroglycan. American Journal of Human Genetics, 2013, 92, 354-365.	6.2	172
65	Genetic links between brain development and brain evolution. Nature Reviews Genetics, 2005, 6, 581-590.	16.3	169
66	Miller-Dieker syndrome: Lissencephaly andmonosomy 17p. Journal of Pediatrics, 1983, 102, 552-558.	1.8	166
67	Loss-of-Function Mutations in RAB18 Cause Warburg Micro Syndrome. American Journal of Human Genetics, 2011, 88, 499-507.	6.2	158
68	Genetic Basis of Brain Malformations. Molecular Syndromology, 2016, 7, 220-233.	0.8	156
69	Syndromes with lissencephaly. II: Walker-Warburg and Cerebro-Oculo-Muscular syndromes and a new syndrome with type II lissencephaly. American Journal of Medical Genetics Part A, 1985, 22, 157-195.	2.4	151
70	Mutation analysis of the DCX gene and genotype/phenotype correlation in subcortical band heterotopia. European Journal of Human Genetics, 2001, 9, 5-12.	2.8	144
71	Mapping of Deletion and Translocation Breakpoints in 1q44 Implicates the Serine/Threonine Kinase AKT3 in Postnatal Microcephaly and Agenesis of the Corpus Callosum. American Journal of Human Genetics, 2007, 81, 292-303.	6.2	144
72	Genetic and Biologic Classification of Infantile Spasms. Pediatric Neurology, 2011, 45, 355-367.	2.1	144

#	Article	IF	CITATIONS
73	X-Linked Lissencephaly With Abnormal Genitalia as a Tangential Migration Disorder Causing Intractable Epilepsy: Proposal for a New Term, "Interneuronopathyâ€# Journal of Child Neurology, 2005, 20, 392-397.	1.4	143
74	Expansion of the first PolyA tract of <i>ARX</i> causes infantile spasms and status dystonicus. Neurology, 2007, 69, 427-433.	1.1	143
75	Subcortical Band Heterotopia in Rare Affected Males Can be Caused by Missense Mutations in DCX (XLIS) or LIS1. Human Molecular Genetics, 1999, 8, 1757-1760.	2.9	142
76	Cerebello-oculo-renal syndromes including Arima, Senior-L�ken and COACH syndromes: More than just variants of Joubert syndrome. American Journal of Medical Genetics Part A, 1999, 86, 459-469.	2.4	142
77	Macrocephaly-Cutis marmorata telangiectatica congenita: A distinct disorder with developmental delay and connective tissue abnormalities. American Journal of Medical Genetics Part A, 1997, 70, 67-73.	2.4	141
78	Inheritance of most X-linked traits is not dominant or recessive, just X-linked. American Journal of Medical Genetics Part A, 2004, 129A, 136-143.	2.4	140
79	Megalencephaly Syndromes and Activating Mutations in the PI3Kâ€AKT Pathway: MPPH and MCAP. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2013, 163, 122-130.	1.6	139
80	Somatic and Germline Mosaic Mutations in the doublecortin Gene Are Associated with Variable Phenotypes. American Journal of Human Genetics, 2000, 67, 574-581.	6.2	135
81	PIK3CA-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution. JCI Insight, 2016, 1, .	5.0	134
82	Overlapping cortical malformations and mutations in TUBB2B and TUBA1A. Brain, 2013, 136, 536-548.	7.6	133
83	Rhombencephalosynapsis: a hindbrain malformation associated with incomplete separation of midbrain and forebrain, hydrocephalus and a broad spectrum of severity. Brain, 2012, 135, 1370-1386.	7.6	131
84	Mutations in 3 genes (MKS3, CC2D2A and RPGRIP1L) cause COACH syndrome (Joubert syndrome with) Tj ETQo	10 0,0 rgB ⁻ 3.2	T /Overlock 10
85	Lissencephaly with Cerebellar Hypoplasia (LCH): A Heterogeneous Group of Cortical Malformations. Neuropediatrics, 2001, 32, 256-263.	0.6	128
86	Interstitial deletion of (17)(p11.2p11.2): Report of six additional patients with a new chromosome deletion syndrome. American Journal of Medical Genetics Part A, 1986, 24, 421-432.	2.4	127
87	X-linked lissencephaly with absent corpus callosum and ambiguous genitalia. American Journal of Medical Genetics Part A, 1999, 86, 331-337.	2.4	126
88	Polymicrogyria and deletion 22q11.2 syndrome: Window to the etiology of a common cortical malformation. American Journal of Medical Genetics, Part A, 2006, 140A, 2416-2425.	1.2	125
89	AHI1gene mutations cause specific forms of Joubert syndrome-related disorders. Annals of Neurology, 2006, 59, 527-534.	5.3	125
90	Early-Life Epilepsies and the Emerging Role of Genetic Testing. JAMA Pediatrics, 2017, 171, 863.	6.2	125

#	Article	IF	CITATIONS
91	Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes. Annals of Neurology, 2005, 58, 680-687.	5.3	124
92	Recessive Mutations in the Gene Encoding the Tight Junction Protein Occludin Cause Band-like Calcification with Simplified Gyration and Polymicrogyria. American Journal of Human Genetics, 2010, 87, 354-364.	6.2	123
93	COL4A1 Mutations Cause Ocular Dysgenesis, Neuronal Localization Defects, and Myopathy in Mice and Walker-Warburg Syndrome in Humans. PLoS Genetics, 2011, 7, e1002062.	3.5	121
94	Pathogenic DDX3X Mutations Impair RNA Metabolism and Neurogenesis during Fetal Cortical Development. Neuron, 2020, 106, 404-420.e8.	8.1	121
95	PRKDC mutations in a SCID patient with profound neurological abnormalities. Journal of Clinical Investigation, 2013, 123, 2969-2980.	8.2	121
96	Bilateral frontoparietal polymicrogyria: Clinical and radiological features in 10 families with linkage to chromosome 16. Annals of Neurology, 2003, 53, 596-606.	5.3	120
97	Familial cavernous malformations of the central nervous system and retina. Annals of Neurology, 1987, 21, 578-583.	5.3	119
98	De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. Nature Genetics, 2014, 46, 510-515.	21.4	118
99	A novel rasopathy caused by recurrent de novo missense mutations in <i>PPP1CB</i> closely resembles Noonan syndrome with loose anagen hair. American Journal of Medical Genetics, Part A, 2016, 170, 2237-2247.	1.2	117
100	Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nature Medicine, 2018, 24, 368-374.	30.7	117
101	Clinical and molecular basis of classical lissencephaly: Mutations in theLIS1 gene (PAFAH1B1). Human Mutation, 2002, 19, 4-15.	2.5	116
102	AHI1 mutations cause both retinal dystrophy and renal cystic disease in Joubert syndrome. Journal of Medical Genetics, 2005, 43, 334-339.	3.2	116
103	Baraitser–Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases. European Journal of Human Genetics, 2015, 23, 292-301.	2.8	115
104	Phenotypic spectrum associated with CASK loss-of-function mutations. Journal of Medical Genetics, 2011, 48, 741-751.	3.2	114
105	New chromosomal syndrome: Miller-Dieker syndrome and monosomy 17p13. Human Genetics, 1984, 67, 193-200.	3.8	111
106	Linkage of a human brain malformation, familial holoprosencephaly, to chromosome 7 and evidence for genetic heterogeneity Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 8102-8106.	7.1	111
107	A Locus for Bilateral Perisylvian Polymicrogyria Maps to Xq28. American Journal of Human Genetics, 2002, 70, 1003-1008.	6.2	111
108	Novel mutations in <i>ATP1A3</i> associated with catastrophic early life epilepsy, episodic prolonged apnea, and postnatal microcephaly. Epilepsia, 2015, 56, 422-430.	5.1	107

#	Article	IF	CITATIONS
109	Subcortical band heterotopia (SBH) in males: clinical, imaging and genetic findings in comparison with females. Brain, 2002, 125, 2507-2522.	7.6	105
110	Mutation of FOXC1 and PITX2 induces cerebral small-vessel disease. Journal of Clinical Investigation, 2014, 124, 4877-4881.	8.2	105
111	Mechanisms of Interhemispheric Transfer and Patterns of Cognitive Function in Acallosal Patients of Normal Intelligence. Archives of Neurology, 1992, 49, 271-277.	4.5	104
112	Genotypically Defined Lissencephalies Show Distinct Pathologies. Journal of Neuropathology and Experimental Neurology, 2005, 64, 847-857.	1.7	104
113	Malformations of Cortical Development and Epilepsy. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a022392-a022392.	6.2	104
114	Lissencephaly: Expanded imaging and clinical classification. American Journal of Medical Genetics, Part A, 2017, 173, 1473-1488.	1.2	104
115	Neuroimaging findings in macrocephaly–capillary malformation: A longitudinal study of 17 patients. American Journal of Medical Genetics, Part A, 2007, 143A, 2981-3008.	1.2	103
116	Mutations of AKT3 are associated with a wide spectrum of developmental disorders including extreme megalencephaly. Brain, 2017, 140, 2610-2622.	7.6	102
117	Ultra-High-Field MR Imaging in Polymicrogyria and Epilepsy. American Journal of Neuroradiology, 2015, 36, 309-316.	2.4	100
118	Previously apparently undescribed syndrome: Shallow orbits, ptosis, coloboma, trigonocephaly, gyral malformations, and mental and growth retardation. American Journal of Medical Genetics Part A, 1995, 57, 403-409.	2.4	99
119	De Novo Mutations in the Beta-Tubulin Gene TUBB2A Cause Simplified Gyral Patterning and Infantile-Onset Epilepsy. American Journal of Human Genetics, 2014, 94, 634-641.	6.2	99
120	Albright hereditary osteodystrophy and del(2)(q37.3) in four unrelated individuals. American Journal of Medical Genetics Part A, 1995, 58, 1-7.	2.4	98
121	Spatial and cell type transcriptional landscape of human cerebellar development. Nature Neuroscience, 2021, 24, 1163-1175.	14.8	98
122	Rapid-onset dystonia-parkinsonism: Linkage to chromosome 19q13. Annals of Neurology, 1999, 46, 176-182.	5.3	97
123	Spatiotemporal expansion of primary progenitor zones in the developing human cerebellum. Science, 2019, 366, 454-460.	12.6	97
124	Mutations in LAMB1 Cause Cobblestone Brain Malformation without Muscular or Ocular Abnormalities. American Journal of Human Genetics, 2013, 92, 468-474.	6.2	96
125	Microlissencephaly: A Heterogeneous Malformation of Cortical Development. Neuropediatrics, 1998, 29, 113-119.	0.6	95
126	Mutations in KATNB1 Cause Complex Cerebral Malformations by Disrupting Asymmetrically Dividing Neural Progenitors. Neuron, 2014, 84, 1226-1239.	8.1	95

#		Article	IF	CITATIONS
12	27	Clinical Nosologic and Genetic Aspects of Joubert and Related Syndromes. Journal of Child Neurology, 1999, 14, 660-666.	1.4	94
12	28	Genetic and neuroradiological heterogeneity of double cortex syndrome. Annals of Neurology, 2000, 47, 265-269.	5.3	94
12	29	Mutations in STAMBP, encoding a deubiquitinating enzyme, cause microcephaly–capillary malformation syndrome. Nature Genetics, 2013, 45, 556-562.	21.4	94
13	30	Consistent chromosome abnormalities identify novel polymicrogyria loci in 1p36.3, 2p16.1–p23.1, 4q21.21–q22.1, 6q26–q27, and 21q2. American Journal of Medical Genetics, Part A, 2008, 146A, 1637-1654.	1.2	93
1	31	Analysis of 17 genes detects mutations in 81% of 811 patients with lissencephaly. Genetics in Medicine, 2018, 20, 1354-1364.	2.4	92
13	32	The molecular landscape of ASPM mutations in primary microcephaly. Journal of Medical Genetics, 2009, 46, 249-253.	3.2	91
1	33	CHMP1A encodes an essential regulator of BMI1-INK4A in cerebellar development. Nature Genetics, 2012, 44, 1260-1264.	21.4	91
13	34	High incidence of progressive postnatal cerebellar enlargement in Costello syndrome: Brain overgrowth associated with <i>HRAS</i> mutations as the likely cause of structural brain and spinal cord abnormalities. American Journal of Medical Genetics, Part A, 2010, 152A, 1161-1168.	1.2	89
1	35	MEF2C Haploinsufficiency features consistent hyperkinesis, variable epilepsy, and has a role in dorsal and ventral neuronal developmental pathways. Neurogenetics, 2013, 14, 99-111.	1.4	89
13	36	Clinical spectrum of SIX3-associated mutations in holoprosencephaly: correlation between genotype, phenotype and function. Journal of Medical Genetics, 2009, 46, 389-398.	3.2	88
18	37	Mosaic Activating Mutations in FGFR1 Cause Encephalocraniocutaneous Lipomatosis. American Journal of Human Genetics, 2016, 98, 579-587.	6.2	88
13	38	Semiquantitative analysis of hypothalamic damage on <scp>MRI</scp> predicts risk for hypothalamic obesity. Obesity, 2015, 23, 1226-1233.	3.0	87
18	39	Periventricular heterotopia in 6q terminal deletion syndrome: role of the C6orf70 gene. Brain, 2013, 136, 3378-3394.	7.6	85
14	40	Flores hominid: New species or microcephalic dwarf?. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 1123-1145.	2.0	83
14	41	Mutations in CENPE define a novel kinetochore-centromeric mechanism for microcephalic primordial dwarfism. Human Genetics, 2014, 133, 1023-1039.	3.8	82
14	42	Delineating SPTAN1 associated phenotypes: from isolated epilepsy to encephalopathy with progressive brain atrophy. Brain, 2017, 140, 2322-2336.	7.6	82
14	43	Linkage and physical mapping of X-linked lissencephaly/SBH (XLIS): a gene causing neuronal migration defects in human brain. Human Molecular Genetics, 1997, 6, 555-562.	2.9	81
14	44	Association and Mutation Analyses of 16p11.2 Autism Candidate Genes. PLoS ONE, 2009, 4, e4582.	2.5	80

#	Article	IF	CITATIONS
145	Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy. ELife, 2015, 4,	6.0	79
146	Recognizable cerebellar dysplasia associated with mutations in multiple tubulin genes. Human Molecular Genetics, 2015, 24, 5313-5325.	2.9	77
147	A developmental classification of malformations of the brainstem. Annals of Neurology, 2007, 62, 625-639.	5.3	75
148	Identification of a Duplication of Xq28 Associated with Bilateral Periventricular Nodular Heterotopia. American Journal of Human Genetics, 1997, 61, 379-387.	6.2	74
149	Chiari I malformation, delayed gross motor skills, severe speech delay, and epileptiform discharges in a child with FOXP1 haploinsufficiency. European Journal of Human Genetics, 2010, 18, 1216-1220.	2.8	74
150	Copy number variants and infantile spasms: evidence for abnormalities in ventral forebrain development and pathways of synaptic function. European Journal of Human Genetics, 2011, 19, 1238-1245.	2.8	74
151	Characterisation of mutations of the phosphoinositide-3-kinase regulatory subunit, PIK3R2, in perisylvian polymicrogyria: a next-generation sequencing study. Lancet Neurology, The, 2015, 14, 1182-1195.	10.2	74
152	Mutations in ARMC9, which Encodes a Basal Body Protein, Cause Joubert Syndrome in Humans and Ciliopathy Phenotypes in Zebrafish. American Journal of Human Genetics, 2017, 101, 23-36.	6.2	74
153	Periventricular nodular heterotopia with overlying polymicrogyria. Brain, 2005, 128, 2811-2821.	7.6	73
154	De novo mutations in GRIN1 cause extensive bilateral polymicrogyria. Brain, 2018, 141, 698-712.	7.6	72
155	A dyadic approach to the delineation of diagnostic entities in clinical genomics. American Journal of Human Genetics, 2021, 108, 8-15.	6.2	71
156	Bilateral periventricular nodular heterotopia with mental retardation and frontonasal malformation. Neurology, 1998, 51, 499-503.	1.1	70
157	A Recurrent Mosaic Mutation in SMO , Encoding the Hedgehog Signal Transducer Smoothened, Is the Major Cause of Curry-Jones Syndrome. American Journal of Human Genetics, 2016, 98, 1256-1265.	6.2	70
158	Biallelic loss of human CTNNA2, encoding $\hat{I}\pm N$ -catenin, leads to ARP2/3 complex overactivity and disordered cortical neuronal migration. Nature Genetics, 2018, 50, 1093-1101.	21.4	70
159	Costello syndrome: Clinical phenotype, genotype, and management guidelines. American Journal of Medical Genetics, Part A, 2019, 179, 1725-1744.	1.2	70
160	Both Rare and De Novo Copy Number Variants Are Prevalent in Agenesis of the Corpus Callosum but Not in Cerebellar Hypoplasia or Polymicrogyria. PLoS Genetics, 2013, 9, e1003823.	3.5	69
161	Mutations in <i>EXOSC2</i> are associated with a novel syndrome characterised by retinitis pigmentosa, progressive hearing loss, premature ageing, short stature, mild intellectual disability and distinctive gestalt. Journal of Medical Genetics, 2016, 53, 419-425.	3.2	69
162	Megalencephaly syndromes associated with mutations of core components of the PI3Kâ€AKT–MTOR pathway: <i>PIK3CA</i> , <i>PIK3R2</i> , <i>AKT3</i> , and <i>MTOR</i> . American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2019, 181, 582-590.	1.6	69

#	Article	IF	CITATIONS
163	Autosomal dominant optic nerve colobomas, vesicoureteral reflux, and renal anomalies. American Journal of Medical Genetics Part A, 1995, 59, 204-208.	2.4	68
164	Cellular and Clinical Impact of Haploinsufficiency for Genes Involved in ATR Signaling. American Journal of Human Genetics, 2007, 81, 77-86.	6.2	68
165	Weaver Syndromeâ€Associated EZH2 Protein Variants Show Impaired Histone Methyltransferase Function In Vitro. Human Mutation, 2016, 37, 301-307.	2.5	68
166	The Neurogenetics of Lissencephaly. Neurologic Clinics, 1989, 7, 89-105.	1.8	67
167	Ethnically diverse causes of Walker-Warburg syndrome (WWS): <i>FCMD</i> mutations are a more common cause of WWS outside of the Middle East. Human Mutation, 2008, 29, E231-E241.	2.5	67
168	The clinical patterns and molecular genetics of lissencephaly and subcortical band heterotopia. Epilepsia, 2010, 51, 5-9.	5.1	66
169	Deletion 16p13.11 uncovers <i>NDE1</i> mutations on the nonâ€deleted homolog and extends the spectrum of severe microcephaly to include fetal brain disruption. American Journal of Medical Genetics, Part A, 2013, 161, 1523-1530.	1.2	66
170	Biallelic mutations in the 3′ exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing. Nature Genetics, 2017, 49, 457-464.	21.4	66
171	Human mutations in integrator complex subunits link transcriptome integrity to brain development. PLoS Genetics, 2017, 13, e1006809.	3.5	66
172	Nonsyndromic mental retardation and cryptogenic epilepsy in women withDoublecortin gene mutations. Annals of Neurology, 2003, 54, 30-37.	5.3	65
173	Identification of a novel recessiveRELN mutation using a homozygous balanced reciprocal translocation. American Journal of Medical Genetics, Part A, 2007, 143A, 939-944.	1.2	65
174	Cerebellar and posterior fossa malformations in patients with autismâ€associated chromosome 22q13 terminal deletion. American Journal of Medical Genetics, Part A, 2013, 161, 131-136.	1.2	65
175	Variable phenotype of rapid-onset dystonia-parkinsonism. Movement Disorders, 1996, 11, 151-156.	3.9	64
176	Megalencephaly and Perisylvian Polymicrogyria with Postaxial Polydactyly and Hydrocephalus: A Rare Brain Malformation Syndrome Associated with Mental Retardation and Seizures. Neuropediatrics, 2004, 35, 353-359.	0.6	64
177	Pontocerebellar hypoplasia type 6: A British case with PEHOâ€like features. American Journal of Medical Genetics, Part A, 2010, 152A, 2079-2084.	1.2	64
178	Identification of genomic loci contributing to agenesis of the corpus callosum. American Journal of Medical Genetics, Part A, 2010, 152A, 2145-2159.	1.2	64
179	Functional genome-wide siRNA screen identifies KIAA0586 as mutated in Joubert syndrome. ELife, 2015, 4, e06602.	6.0	64
180	Astroglial-Mediated Remodeling of the Interhemispheric Midline Is Required for the Formation of the Corpus Callosum. Cell Reports, 2016, 17, 735-747.	6.4	64

#	Article	IF	CITATIONS
181	Redefining the Etiologic Landscape of Cerebellar Malformations. American Journal of Human Genetics, 2019, 105, 606-615.	6.2	61
182	Further comments on the lissencephaly syndromes. American Journal of Medical Genetics Part A, 1985, 22, 197-211.	2.4	60
183	RTTN Mutations Link Primary Cilia Function to Organization of the Human Cerebral Cortex. American Journal of Human Genetics, 2012, 91, 533-540.	6.2	60
184	Radiologic classification of malformations of cortical development. Current Opinion in Neurology, 2001, 14, 145-149.	3.6	59
185	Intragenic deletions and duplications of the LIS1 and DCX genes: a major disease-causing mechanism in lissencephaly and subcortical band heterotopia. European Journal of Human Genetics, 2009, 17, 911-918.	2.8	59
186	Polymicrogyria Includes Fusion of the Molecular Layer and Decreased Neuronal Populations But Normal Cortical Laminar Organization. Journal of Neuropathology and Experimental Neurology, 2011, 70, 438-443.	1.7	59
187	Mutations inPOMT1 are found in a minority of patients with Walker-Warburg syndrome. American Journal of Medical Genetics, Part A, 2005, 133A, 53-57.	1.2	58
188	Infantile Cerebral and Cerebellar Atrophy Is Associated with a Mutation in the MED17 Subunit of the Transcription Preinitiation Mediator Complex. American Journal of Human Genetics, 2010, 87, 667-670.	6.2	58
189	Primary microcephaly: New approaches for an old disorder. American Journal of Medical Genetics Part A, 2002, 112, 315-317.	2.4	57
190	MACF1 Mutations Encoding Highly Conserved Zinc-Binding Residues of the GAR Domain Cause Defects in Neuronal Migration and Axon Guidance. American Journal of Human Genetics, 2018, 103, 1009-1021.	6.2	57
191	Brain anomalies in encephalocraniocutaneous lipomatosis. American Journal of Medical Genetics, Part A, 2007, 143A, 2963-2972.	1.2	56
192	Longâ€ŧerm survival in TARP syndrome and confirmation of <i>RBM10</i> as the diseaseâ€causing gene. American Journal of Medical Genetics, Part A, 2011, 155, 2516-2520.	1.2	56
193	Phenotypic analysis of individuals with Costello syndrome due to HRAS p.G13C. , 2011, 155, 706-716.		55
194	Epilepsy and outcome in <i>FOXG1</i> â€related disorders. Epilepsia, 2014, 55, 1292-1300.	5.1	55
195	PARD3 dysfunction in conjunction with dynamic HIPPO signaling drives cortical enlargement with massive heterotopia. Genes and Development, 2018, 32, 763-780.	5.9	55
196	Enzymatic diagnostic test for Muscle-Eye-Brain type congenital muscular dystrophy using commercially available reagents. Clinical Biochemistry, 2003, 36, 339-344.	1.9	54
197	MICRO syndrome: An entity distinct from COFS syndrome. American Journal of Medical Genetics Part A, 2004, 128A, 235-245.	2.4	54
198	Rapid diagnosis of Miller-Dieker syndrome and isolated lissencephaly sequence by the polymerase chain reaction. Human Genetics, 1990, 85, 555-9.	3.8	53

#	Article	IF	CITATIONS
199	CDKL5 and ARX Mutations in Males With Early-Onset Epilepsy. Pediatric Neurology, 2013, 48, 367-377.	2.1	53
200	The duplication 17p13.3 phenotype: Analysis of 21 families delineates developmental, behavioral and brain abnormalities, and rare variant phenotypes. American Journal of Medical Genetics, Part A, 2013, 161, 1833-1852.	1.2	53
201	International consensus recommendations on the diagnostic work-up for malformations of cortical development. Nature Reviews Neurology, 2020, 16, 618-635.	10.1	53
202	A de novo 1p34.2 microdeletion identifies the synaptic vesicle gene RIMS3 as a novel candidate for autism. Journal of Medical Genetics, 2010, 47, 81-90.	3.2	52
203	Cerebrospinal fluid homovanillic acid levels in rapid-onset dystonia-parkinsonism. Annals of Neurology, 1998, 43, 521-526.	5.3	51
204	No major role for the <i>EMX2</i> gene in schizencephaly. American Journal of Medical Genetics, Part A, 2008, 146A, 1142-1150.	1.2	51
205	Mutations in CRADD Result in Reduced Caspase-2-Mediated Neuronal Apoptosis and Cause Megalencephaly with a Rare Lissencephaly Variant. American Journal of Human Genetics, 2016, 99, 1117-1129.	6.2	50
206	Fluorescence in situ hybridization analysis with LIS1 specific probes reveals a high deletion mutation rate in isolated lissencephaly sequence. Genetics in Medicine, 1998, 1, 29-33.	2.4	49
207	AP1S2 is mutated in X-linked Dandy–Walker malformation with intellectual disability, basal ganglia disease and seizures (Pettigrew syndrome). European Journal of Human Genetics, 2014, 22, 363-368.	2.8	49
208	<i>LIS1</i> missense mutations cause milder lissencephaly phenotypes including a child with normal IQ. Neurology, 2001, 57, 416-422.	1.1	48
209	De Novo Mutations in SIK1 Cause a Spectrum of Developmental Epilepsies. American Journal of Human Genetics, 2015, 96, 682-690.	6.2	48
210	Primary brain calcification: an international study reporting novel variants and associated phenotypes. European Journal of Human Genetics, 2018, 26, 1462-1477.	2.8	48
211	Loss of SMPD4 Causes a Developmental Disorder Characterized by Microcephaly and Congenital Arthrogryposis. American Journal of Human Genetics, 2019, 105, 689-705.	6.2	48
212	Agenesis of the corpus callosum and Dandy-Walker malformation associated with hemimegalencephaly in the sebaceous nevus syndrome. American Journal of Medical Genetics Part A, 1995, 56, 147-150.	2.4	47
213	Interneuron deficits in patients with the Miller-Dieker syndrome. Acta Neuropathologica, 2005, 109, 400-404.	7.7	47
214	Oculocerebrocutaneous syndrome: the brain malformation defines a core phenotype. Journal of Medical Genetics, 2005, 42, 913-921.	3.2	47
215	Lissencephaly associated mutations suggest a requirement for the PAFAH1B heterotrimeric complex in brain development. Mechanisms of Development, 2000, 92, 263-271.	1.7	46
216	Septo-optic dysplasia and amniotic bands: Further evidence for a vascular pathogenesis. American Journal of Medical Genetics Part A, 2004, 125A, 12-16.	2.4	46

#	Article	IF	CITATIONS
217	Bandâ€like intracranial calcification with simplified gyration and polymicrogyria: A distinct "pseudoâ€TORCH―phenotype. American Journal of Medical Genetics, Part A, 2008, 146A, 3173-3180.	1.2	46
218	Homonucleotide expansion and contraction mutations ofPAX2 and inclusion of Chiari 1 malformation as part of Renal-Coloboma syndrome. Human Mutation, 1999, 14, 369-376.	2.5	45
219	Mandibulofacial Dysostosis with Microcephaly: Mutation and Database Update. Human Mutation, 2016, 37, 148-154.	2.5	45
220	Hypomorphic Recessive Variants in SUFU Impair the Sonic Hedgehog Pathway and Cause Joubert Syndrome with Cranio-facial and Skeletal Defects. American Journal of Human Genetics, 2017, 101, 552-563.	6.2	45
221	Neuroimaging findings in Mowat–Wilson syndrome: a study of 54 patients. Genetics in Medicine, 2017, 19, 691-700.	2.4	45
222	Valproate-induced liver failure in one of two siblings with alpers disease. Pediatric Neurology, 1997, 16, 337-343.	2.1	44
223	The pattern of inheritance of X-linked traits is not dominant or recessive, just X-linked. Acta Paediatrica, International Journal of Paediatrics, 2006, 95, 11-15.	1.5	44
224	Distinctive Phenotypic Abnormalities Associated with Submicroscopic 21q22 Deletion Including DYRK1A. Molecular Syndromology, 2010, 1, 113-120.	0.8	44
225	Recurrent de novo BICD2 mutation associated with arthrogryposis multiplex congenita and bilateral perisylvian polymicrogyria. Neuromuscular Disorders, 2016, 26, 744-748.	0.6	44
226	Distinguishing 3 classes of corpus callosal abnormalities in consanguineous families. Neurology, 2011, 76, 373-382.	1.1	43
227	De Novo Variants in WDR37 Are Associated with Epilepsy, Colobomas, Dysmorphism, Developmental Delay, Intellectual Disability, and Cerebellar Hypoplasia. American Journal of Human Genetics, 2019, 105, 413-424.	6.2	43
228	Vascular abnormalities in epidermal nevus syndrome. Neurology, 1991, 41, 276-276.	1.1	43
229	The molar tooth sign. Neurology, 2008, 70, 556-565.	1.1	42
230	Novel Mutations Including Deletions of the Entire <i>OFD1</i> Gene in 30 Families with Type 1 Orofaciodigital Syndrome: A Study of the Extensive Clinical Variability. Human Mutation, 2013, 34, 237-247.	2.5	41
231	Variable brain phenotype primarily affects the brainstem and cerebellum in patients with osteogenesis imperfecta caused by recessive <i>WNT1</i> mutations. Journal of Medical Genetics, 2016, 53, 427-430.	3.2	41
232	Beyond Gómezâ€Lópezâ€Hernández syndrome: Recurring phenotypic themes in rhombencephalosynapsis. American Journal of Medical Genetics, Part A, 2012, 158A, 2393-2406.	1.2	40
233	NFIB Haploinsufficiency Is Associated with Intellectual Disability and Macrocephaly. American Journal of Human Genetics, 2018, 103, 752-768.	6.2	40
234	De novo and inherited private variants in MAP1B in periventricular nodular heterotopia. PLoS Genetics, 2018, 14, e1007281.	3.5	40

#	Article	IF	CITATIONS
235	LIS1: from cortical malformation to essential protein of cellular dynamics. Trends in Neurosciences, 2001, 24, 489-492.	8.6	39
236	Cobblestone-like brain dysgenesis and altered glycosylation in congenital cutis laxa, Debre̕type. Neurology, 2008, 71, 1602-1608.	1.1	39
237	SLC35A2â€CDG: Functional characterization, expanded molecular, clinical, and biochemical phenotypes of 30 unreported Individuals. Human Mutation, 2019, 40, 908-925.	2.5	39
238	Genotype correlates with clinical severity in PIK3CA-associated lymphatic malformations. JCI Insight, 2019, 4, .	5.0	39
239	A novel mechanistic spectrum underlies glaucoma-associated chromosome 6p25 copy number variation. Human Molecular Genetics, 2008, 17, 3446-3458.	2.9	38
240	Genetic and functional analyses identify <i>DISC1</i> as a novel callosal agenesis candidate gene. American Journal of Medical Genetics, Part A, 2011, 155, 1865-1876.	1.2	38
241	Expanding the SHOC2 mutation associated phenotype of noonan syndrome with loose anagen hair: Structural brain anomalies and myelofibrosis. American Journal of Medical Genetics, Part A, 2013, 161, 2420-2430.	1.2	38
242	Mutations in Extracellular Matrix Genes <i>NID1</i> and <i>LAMC1</i> Cause Autosomal Dominant Dandy-Walker Malformation and Occipital Cephaloceles. Human Mutation, 2013, 34, 1075-1079.	2.5	38
243	MN1 C-terminal truncation syndrome is a novel neurodevelopmental and craniofacial disorder with partial rhombencephalosynapsis. Brain, 2020, 143, 55-68.	7.6	38
244	Mutations and polymorphisms in the tuberous sclerosis complex gene on chromosome 16. Human Mutation, 1997, 9, 23-29.	2.5	37
245	Deficiency of chromosome 8p21.1→8pter: Case report and review of the literature. American Journal of Medical Genetics Part A, 1985, 22, 125-134.	2.4	36
246	Familial Miller-Dieker syndrome associated with pericentric inversion of chromosome 17. American Journal of Medical Genetics Part A, 1986, 23, 853-859.	2.4	36
247	Reciprocal fusion transcripts of two novel Zn-finger genes in a female with absence of the corpus callosum, ocular colobomas and a balanced translocation between chromosomes 2p24 and 9q32. European Journal of Human Genetics, 2003, 11, 527-534.	2.8	36
248	Linkage to chromosome 2q36.1 in autosomal dominant Dandy-Walker malformation with occipital cephalocele and evidence for genetic heterogeneity. Human Genetics, 2008, 123, 237-245.	3.8	36
249	Investigation of TBR1 Hemizygosity: Four Individuals with 2q24 Microdeletions. Molecular Syndromology, 2012, 3, 102-112.	0.8	36
250	Congenital microcephaly and chorioretinopathy due to de novo heterozygous <i>KIF11</i> mutations: Five novel mutations and review of the literature. American Journal of Medical Genetics, Part A, 2014, 164, 2879-2886.	1.2	36
251	Characterization of Brain Malformations in the Baraitser-Winter Syndrome and Review of the Literature. Neuropediatrics, 2003, 34, 287-292.	0.6	35
252	A novel <i>SIX3</i> mutation segregates with holoprosencephaly in a large family. American Journal of Medical Genetics, Part A, 2009, 149A, 919-925.	1.2	35

#	Article	IF	CITATIONS
253	Mutations in MAST1 Cause Mega-Corpus-Callosum Syndrome with Cerebellar Hypoplasia and Cortical Malformations. Neuron, 2018, 100, 1354-1368.e5.	8.1	35
254	<i>ATP1A2-</i> and <i>ATP1A3-</i> associated early profound epileptic encephalopathy and polymicrogyria. Brain, 2021, 144, 1435-1450.	7.6	35
255	Toriello-Carey syndrome: Delineation and review. American Journal of Medical Genetics Part A, 2003, 123A, 84-90.	2.4	34
256	Significant overlap and possible identity of macrocephaly capillary malformation and megalencephaly polymicrogyriaâ€polydactyly hydrocephalus syndromes. American Journal of Medical Genetics, Part A, 2009, 149A, 868-876.	1.2	34
257	Diencephalic-mesencephalic junction dysplasia: a novel recessive brain malformation. Brain, 2012, 135, 2416-2427.	7.6	34
258	Disruption of RFX family transcription factors causes autism, attention-deficit/hyperactivity disorder, intellectual disability, and dysregulated behavior. Genetics in Medicine, 2021, 23, 1028-1040.	2.4	34
259	Truncation ofNHEJ1 in a patient with polymicrogyria. Human Mutation, 2007, 28, 356-364.	2.5	33
260	Four new patients with Gomez–Lopezâ€Hernandez syndrome and proposed diagnostic criteria. American Journal of Medical Genetics, Part A, 2013, 161, 320-326.	1.2	33
261	Subcortical heterotopic gray matter brain malformations. Neurology, 2019, 93, e1360-e1373.	1.1	33
262	Copy number and sequence variants implicate <i>APBA2</i> as an autism candidate gene. Autism Research, 2009, 2, 359-364.	3.8	32
263	STIL mutation causes autosomal recessive microcephalic lobar holoprosencephaly. Human Genetics, 2015, 134, 45-51.	3.8	32
264	Peritrigonal and temporo-occipital heterotopia with corpus callosum and cerebellar dysgenesis. Neurology, 2012, 79, 1244-1251.	1.1	31
265	De Novo Missense Variants in FBXW11 Cause Diverse Developmental Phenotypes Including Brain, Eye, and Digit Anomalies. American Journal of Human Genetics, 2019, 105, 640-657.	6.2	31
266	Phenotypic outcomes in Mouse and Human Foxc1 dependent Dandy-Walker cerebellar malformation suggest shared mechanisms. ELife, 2017, 6, .	6.0	31
267	The microcephalyâ€capillary malformation syndrome. American Journal of Medical Genetics, Part A, 2011, 155, 2080-2087.	1.2	30
268	Two Hundred Thirty-Six Children With Developmental Hydrocephalus: Causes and Clinical Consequences. Journal of Child Neurology, 2016, 31, 309-320.	1.4	30
269	Tubulinopathies continued: refining the phenotypic spectrum associated with variants in TUBG1. European Journal of Human Genetics, 2018, 26, 1132-1142.	2.8	30
270	Plasmapheresis with acute inflammatory polyneuropathy. Pediatric Neurology, 1990, 6, 17-19.	2.1	29

#	Article	IF	CITATIONS
271	Clinical and Brain Imaging Heterogeneity of Severe Microcephaly. Pediatric Neurology, 2010, 43, 7-16.	2.1	29
272	Familial lissencephaly with cleft palate and severe cerebellar hypoplasia. American Journal of Medical Genetics Part A, 1999, 87, 440-445.	2.4	28
273	Expansion of the TARP syndrome phenotype associated with de novo mutations and mosaicism. American Journal of Medical Genetics, Part A, 2014, 164, 120-128.	1.2	28
274	Update on the <i>ACTG1</i> â€associated Baraitser–Winter cerebrofrontofacial syndrome. American Journal of Medical Genetics, Part A, 2016, 170, 2644-2651.	1.2	28
275	Recurrent constellations of embryonic malformations reâ€conceptualized as an overlapping group of disorders with shared pathogenesis. American Journal of Medical Genetics, Part A, 2020, 182, 2646-2661.	1.2	28
276	Cell-free DNA as a diagnostic analyte for molecular diagnosis of vascular malformations. Genetics in Medicine, 2021, 23, 123-130.	2.4	28
277	Why West? Comparisons of clinical, genetic and molecular features of infants with and without spasms. PLoS ONE, 2018, 13, e0193599.	2.5	28
278	Acute inflammatory demyelinating polyradiculoneuropathy (Guillain-Barré syndrome) after immunization with Haemophilus influenzae type b conjugate vaccine. Journal of Pediatrics, 1989, 115, 743-746.	1.8	27
279	Childhood stroke and lupus anticoagulant. Pediatric Neurology, 1994, 10, 54-57.	2.1	27
280	Somatic PDGFRB Activating Variants in Fusiform Cerebral Aneurysms. American Journal of Human Genetics, 2019, 104, 968-976.	6.2	27
281	De novo TBR1 variants cause a neurocognitive phenotype with ID and autistic traits: report of 25 new individuals and review of the literature. European Journal of Human Genetics, 2020, 28, 770-782.	2.8	27
282	Benign hereditary chorea. Pediatric Neurology, 1993, 9, 337-340.	2.1	26
283	Microcephaly with simplified gyral pattern in six related children. , 1999, 84, 137-144.		26
284	Molecular and neuroimaging findings in pontocerebellar hypoplasia type 2 (PCH2): Is prenatal diagnosis possible?. American Journal of Medical Genetics, Part A, 2010, 152A, 2268-2276.	1.2	26
285	Rhombencephalosynapsis: Fused cerebellum, confused geneticists. , 2018, 178, 432-439.		26
286	Missense variants in DPYSL5 cause a neurodevelopmental disorder with corpus callosum agenesis and cerebellar abnormalities. American Journal of Human Genetics, 2021, 108, 951-961.	6.2	26
287	Copy Number Variation Analysis in 98 Individuals with PHACE Syndrome. Journal of Investigative Dermatology, 2013, 133, 677-684.	0.7	25
288	Autosomal recessive mutations in nuclear transport factor KPNA7 are associated with infantile spasms and cerebellar malformation. European Journal of Human Genetics, 2014, 22, 587-593.	2.8	25

#	Article	IF	CITATIONS
289	Postzygotic inactivating mutations of RHOA cause a mosaic neuroectodermal syndrome. Nature Genetics, 2019, 51, 1438-1441.	21.4	25
290	Profiling PI3K-AKT-MTOR variants in focal brain malformations reveals new insights for diagnostic care. Brain, 2022, 145, 925-938.	7.6	25
291	Isolated Lissencephaly: Report of Four Patients From Two Unrelated Families. Journal of Child Neurology, 1990, 5, 52-59.	1.4	24
292	Classification of the cerebro-oculo-muscular syndrome(s). Brain and Development, 1993, 15, 242-244.	1.1	24
293	Olivopontocerebellar atrophy leading to recognition of carbohydrate-deficient glycoprotein syndrome type I. Journal of Neurology, 1996, 243, 700-705.	3.6	24
294	<i>SETD2</i> related overgrowth syndrome: Presentation of four new patients and review of the literature. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2019, 181, 509-518.	1.6	24
295	Clinical manifestations and evaluation of isolated lissencephaly. Child's Nervous System, 1993, 9, 387-390.	1.1	23
296	X-linked malformations of cortical development. American Journal of Medical Genetics Part A, 2000, 97, 213-220.	2.4	23
297	NRF1 association with AUTS2-Polycomb mediates specific gene activation in the brain. Molecular Cell, 2021, 81, 4663-4676.e8.	9.7	23
298	Congenital pontocerebellar atrophy in three patients: clinical, radiologic and etiologic considerations. Neuroradiology, 1996, 38, 684-687.	2.2	22
299	Lissencephaly and subcortical band heterotopia: molecular basis and diagnosis. Trends in Molecular Medicine, 2000, 6, 277-284.	2.6	22
300	Carriers and patients with muscle–eye–brain disease can be rapidly diagnosed by enzymatic analysis of fibroblasts and lymphoblasts. Neuromuscular Disorders, 2006, 16, 132-136.	0.6	22
301	Megalencephaly and Perisylvian Polymicrogyria with Postaxial Polydactyly and Hydrocephalus (MPPH): Report of a New Case. Neuropediatrics, 2007, 38, 200-203.	0.6	22
302	Microcephaly, sensorineural deafness and Currarino triad with duplication–deletion of distal 7q. European Journal of Pediatrics, 2010, 169, 475-481.	2.7	22
303	Neuropathology of brain and spinal malformations in a case of monosomy 1p36. Acta Neuropathologica Communications, 2013, 1, 45.	5.2	22
304	Homozygous TAF8 mutation in a patient with intellectual disability results in undetectable TAF8 protein, but preserved RNA polymerase II transcription. Human Molecular Genetics, 2018, 27, 2171-2186.	2.9	22
305	The Genetic Landscape of Cerebral Steno-Occlusive Arteriopathy and Stroke in Sickle Cell Anemia. Journal of Stroke and Cerebrovascular Diseases, 2018, 27, 2897-2904.	1.6	22
306	Heterogeneous clinical phenotypes and cerebral malformations reflected by rotatin cellular dynamics. Brain, 2019, 142, 867-884.	7.6	22

#	Article	IF	CITATIONS
307	Activating variants in <scp><i>PDGFRB</i></scp> result in a spectrum of disorders responsive to imatinib monotherapy. American Journal of Medical Genetics, Part A, 2020, 182, 1576-1591.	1.2	21
308	Pathogenic Variants in CEP85L Cause Sporadic and Familial Posterior Predominant Lissencephaly. Neuron, 2020, 106, 237-245.e8.	8.1	21
309	Persistent figureâ€eight and sideâ€toâ€side head shaking is a marker for rhombencephalosynapsis. Movement Disorders, 2013, 28, 2019-2023.	3.9	20
310	The Developmental Brain Disorders Database (DBDB): A curated neurogenetics knowledge base with clinical and research applications. American Journal of Medical Genetics, Part A, 2014, 164, 1503-1511.	1.2	20
311	X Chromosome-Inactivation Patterns in 31 Individuals with PHACE Syndrome. Molecular Syndromology, 2013, 4, 114-118.	0.8	19
312	Phenotype Differentiation of FOXG1 and MECP2 Disorders: A New Method for Characterization of Developmental Encephalopathies. Journal of Pediatrics, 2016, 178, 233-240.e10.	1.8	19
313	Congenital muscular dystrophies: Clinical review and proposed classification. Pediatric Neurology, 1995, 13, 97-103.	2.1	18
314	Biallelic loss of function variants in ATP1A2 cause hydrops fetalis, microcephaly, arthrogryposis and extensive cortical malformations. European Journal of Medical Genetics, 2020, 63, 103624.	1.3	18
315	Bi-allelic Loss of Human APC2, Encoding Adenomatous Polyposis Coli Protein 2, Leads to Lissencephaly, Subcortical Heterotopia, and Global Developmental Delay. American Journal of Human Genetics, 2019, 105, 844-853.	6.2	17
316	Recessive developmental delay, small stature, microcephaly and brain calcifications with locus on chromosome 2. American Journal of Medical Genetics, Part A, 2009, 149A, 129-137.	1.2	16
317	A Novel Missense Mutation in <i>LIS1</i> in a Child With Subcortical Band Heterotopia and Pachygyria Inherited From His Mildly Affected Mother With Somatic Mosaicism. Journal of Child Neurology, 2010, 25, 738-741.	1.4	16
318	Structural malformations of the brain, eye, and pituitary gland in PHACE syndrome. American Journal of Medical Genetics, Part A, 2018, 176, 48-55.	1.2	16
319	Immune Evasion Strategies Used by Zika Virus to Infect the Fetal Eye and Brain. Viral Immunology, 2020, 33, 22-37.	1.3	16
320	Lissencephaly: Update on diagnostics and clinical management. European Journal of Paediatric Neurology, 2021, 35, 147-152.	1.6	16
321	Bioinformatics and Data-Intensive Scientific Discovery in the Beginning of the 21st Century. OMICS A Journal of Integrative Biology, 2011, 15, 199-201.	2.0	15
322	Familial recurrences of <i>FOXG1</i> â€related disorder: Evidence for mosaicism. American Journal of Medical Genetics, Part A, 2015, 167, 3096-3102.	1.2	15
323	Walker-Warburg syndrome and tectocerebellar dysraphia: A novel association caused by a homozygous DAG1 mutation. European Journal of Paediatric Neurology, 2018, 22, 525-531.	1.6	15
324	Approach to overgrowth syndromes in the genome era. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2019, 181, 483-490.	1.6	15

#	Article	IF	CITATIONS
325	Polymicrogyria and Motor Neuropathy in Micro Syndrome. Neuropediatrics, 2000, 31, 218-221.	0.6	14
326	Genotype–phenotype correlation at codon 1740 of <scp><i>SETD2</i></scp> . American Journal of Medical Genetics, Part A, 2020, 182, 2037-2048.	1.2	14
327	Proximal variants in <scp><i>CCND2</i></scp> associated with microcephaly, short stature, and developmental delay: A case series and review of inverse brain growth phenotypes. American Journal of Medical Genetics, Part A, 2021, 185, 2719-2738.	1.2	14
328	Response to Santavuori et al. regarding Walker-Warburg syndrome and muscle-eye-brain disease. American Journal of Medical Genetics Part A, 1990, 36, 373-374.	2.4	13
329	Risk of abnormal pregnancy outcome in carriers of balanced reciprocal translocations involving the Miller-Dieker syndrome (MDS) critical region in chromosome 17p13.3. , 1999, 85, 369-375.		13
330	New syndrome: Focal dermal hypoplasia, morning glory anomaly, and polymicrogyria. American Journal of Medical Genetics Part A, 2004, 124A, 202-208.	2.4	13
331	Hereditary hyperekplexia caused by novel mutations of GLRA1 in Turkish families. Molecular Diagnosis and Therapy, 2004, 8, 151-155.	1.1	13
332	The spectrum of brain malformations and disruptions in twins. American Journal of Medical Genetics, Part A, 2021, 185, 2690-2718.	1.2	13
333	Variants in GNAI1 cause a syndrome associated with variable features including developmental delay, seizures, and hypotonia. Genetics in Medicine, 2021, 23, 881-887.	2.4	13
334	<i>De novo</i> coding variants in the <i>AGO1</i> gene cause a neurodevelopmental disorder with intellectual disability. Journal of Medical Genetics, 2022, 59, 965-975.	3.2	13
335	The "megalencephalyâ€capillary malformation―(MCAP) syndrome: The nomenclature of a highly recognizable multiple congenital anomaly syndrome. American Journal of Medical Genetics, Part A, 2013, 161, 2115-2116.	1.2	12
336	Comparison of brain MRI findings with language and motor function in the dystroglycanopathies. Neurology, 2017, 88, 623-629.	1.1	12
337	Microcephaly, jejunal atresia, aberrant right bronchus, ocular anomalies, and XY sex reversal. American Journal of Medical Genetics Part A, 2004, 125A, 293-298.	2.4	11
338	Refined linkage to the RDP/DYT12 locus on 19q13.2 and evaluation of GRIK5 as a candidate gene. Movement Disorders, 2004, 19, 845-847.	3.9	11
339	Mutation and evolutionary analyses identify NR2E1-candidate-regulatory mutations in humans with severe cortical malformations. Genes, Brain and Behavior, 2007, 6, 503-516.	2.2	11
340	Corpus callosum agenesis, severe mental retardation, epilepsy, and dyskinetic quadriparesis due to a novel mutation in the homeodomain of ARX. , 2011, 155, 892-897.		11
341	Identification and Characterization of a Novel ConstitutionalPIK3CAMutation in a Child Lacking the Typical Segmental Overgrowth of "PIK3CA-Related Overgrowth Spectrum― Human Mutation, 2016, 37, 242-245.	2.5	11
342	Description of a new oncogenic mechanism for atypical teratoid rhabdoid tumors in patients with ring chromosome 22. American Journal of Medical Genetics, Part A, 2017, 173, 245-249.	1.2	11

#	Article	IF	CITATIONS
343	An update on oculocerebrocutaneous (Delleman-Oorthuys) syndrome. , 2018, 178, 414-422.		11
344	Autosomal dominant TUBB3-related syndrome: Fetal, radiologic, clinical and morphological features. European Journal of Paediatric Neurology, 2020, 26, 46-60.	1.6	11
345	Defining the phenotypical spectrum associated with variants in <i>TUBB2A</i> . Journal of Medical Genetics, 2021, 58, 33-40.	3.2	11
346	Catenin delta-1 (CTNND1) phosphorylation controls the mesenchymal to epithelial transition in astrocytic tumors. Human Molecular Genetics, 2016, 25, 4201-4210.	2.9	10
347	Anatomical configurations associated with posthemorrhagic hydrocephalus among premature infants with intraventricular hemorrhage. Neurosurgical Focus, 2016, 41, E5.	2.3	10
348	Familial pericentric and paracentric inversions of chromosome 1. Human Genetics, 1988, 79, 315-20.	3.8	9
349	Expanding the differential diagnosis of fetal hydrops: an unusual prenatal presentation of megalencephalyâ€capillary malformation syndrome. Prenatal Diagnosis, 2013, 33, 1010-1012.	2.3	9
350	Progress in autism and related disorders of brain development. Lancet Neurology, The, 2015, 14, 1069-1070.	10.2	9
351	Hereditary Hyperekplexia caused by Novel Mutations of GLRA1 in Turkish Families. Molecular Diagnosis and Therapy, 2004, 8, 151-155.	1.1	9
352	Familial hydrocephalus with normal cognition and distinctive radiological features. American Journal of Medical Genetics, Part A, 2010, 152A, 2743-2748.	1.2	8
353	Autosomal-dominant early-onset spastic paraparesis with brain calcification due to <i>IFIH1</i> gain-of-function. Human Mutation, 2018, 39, 1076-1080.	2.5	8
354	Biallelic DAB1 Variants Are Associated With Mild Lissencephaly and Cerebellar Hypoplasia. Neurology: Genetics, 2021, 7, e558.	1.9	7
355	Disorders of Brain Size. , 2012, , 173-201.		7
356	Malformations of Cortical Development. , 2012, , 202-231.		7
357	Familial remitting chorea, nystagmus, and cataracts. American Journal of Medical Genetics Part A, 1993, 47, 1215-1217.	2.4	6
358	Diffuse polymicrogyria associated with an unusual pattern of multiple congenital anomalies including turribrachycephaly and hypogenitalism. , 1996, 63, 314-317.		6
359	Unbalanced der(5)t(5;20) translocation associated with megalencephaly, perisylvian polymicrogyria, polydactyly and hydrocephalus. American Journal of Medical Genetics, Part A, 2010, 152A, 1488-1497.	1.2	6
360	Cobblestone Malformation in LAMA2 Congenital Muscular Dystrophy (MDC1A). Journal of Neuropathology and Experimental Neurology, 2020, 79, 998-1010.	1.7	6

#	Article	IF	CITATIONS
361	Expanding the <scp><i>KIF4A</i></scp> â€associated phenotype. American Journal of Medical Genetics, Part A, 2021, 185, 3728-3739.	1.2	6
362	A de novo GRIN1 Variant Associated With Myoclonus and Developmental Delay: From Molecular Mechanism to Rescue Pharmacology. Frontiers in Genetics, 2021, 12, 694312.	2.3	6
363	Monoallelic and biallelic mutations in <i>RELN</i> underlie a graded series of neurodevelopmental disorders. Brain, 2022, 145, 3274-3287.	7.6	6
364	Cerebellar Ataxia With Progressive Improvement. Archives of Neurology, 2006, 63, 594.	4.5	5
365	Acetylsalicylic acid suppression of the PI3K pathway as a novel medical therapy for head and neck lymphatic malformations. International Journal of Pediatric Otorhinolaryngology, 2021, 151, 110869.	1.0	5
366	New recessive syndrome of microcephaly, cerebellar hypoplasia, and congenital heart conduction defect. American Journal of Medical Genetics, Part A, 2011, 155, 3035-3041.	1.2	4
367	Genetic and neuroradiological heterogeneity of double cortex syndrome. Annals of Neurology, 2000, 47, 265-269.	5.3	4
368	ACTA2-Related Dysgyria: An Under-Recognized Malformation of Cortical Development. American Journal of Neuroradiology, 2021, , .	2.4	4
369	Multidisciplinary interaction and MCD gene discovery. The perspective of the clinical geneticist. European Journal of Paediatric Neurology, 2021, 35, 27-34.	1.6	3
370	Xâ€linked lissencephaly with absent corpus callosum and ambiguous genitalia. American Journal of Medical Genetics Part A, 1999, 86, 331-337.	2.4	3
371	Overview of Disorders of Brain Development. , 2012, , 120-124.		3
372	Chromosome X and 17-linked lissencephaly (smooth brain) syndromes. Mental Retardation and Developmental Disabilities Research Reviews, 1996, 2, 118-121.	3.6	2
373	Agenesis of the corpus callosum and congenital lymphedema: A novel recognizable syndrome?. American Journal of Medical Genetics, Part A, 2010, 152A, 1621-1626.	1.2	2
374	Loss-of-Function Mutations in RAB18 Cause Warburg Micro Syndrome. American Journal of Human Genetics, 2011, 88, 678.	6.2	2
375	Malformations of Cortical Development. , 2017, , 218-225.		2
376	Unsuccessful physostigmine therapy in Reye syndrome. Annals of Neurology, 1979, 6, 141-141.	5.3	1
377	Autosomal dominant torsion dystonia with onset in infancy. Pediatric Neurology, 1996, 15, 245-248.	2.1	1
378	The pattern of inheritance of X-linked traits is not dominant or recessive, just X-linked. Acta Paediatrica, International Journal of Paediatrics, 2007, 95, 11-15.	1.5	1

#	Article	IF	CITATIONS
379	De Novo Mutations in SIK1 Cause a Spectrum of Developmental Epilepsies. American Journal of Human Genetics, 2015, 96, 1009.	6.2	1
380	ISDN2014_0157: Modeling human PIK3CAâ€related congenital brain overgrowth and epilepsy in mice. International Journal of Developmental Neuroscience, 2015, 47, 46-46.	1.6	1
381	Disorders of Brain Size. , 2017, , 208-217.		1
382	Duplication 2p16 is associated with perisylvian polymicrogyria. American Journal of Medical Genetics, Part A, 2019, 179, 2343-2356.	1.2	1
383	Genetics of Hydrocephalus: Causal and Contributory Factors. , 2019, , 115-129.		1
384	Isolation of a Miller–Dicker lissencephaly gene containing G protein β-subunit-like repeats. , 0, .		1
385	Polio vaccine and GBS. Neurology, 1990, 40, 729.	1.1	1
386	Pitfalls of the Morphologic Approach. Journal of Neuropathology and Experimental Neurology, 2006, 65, 302-303.	1.7	0
387	Pathological subtypes of polymicrogyria and brain development. Journal of Neuropathology and Experimental Neurology, 2007, 66, 436.	1.7	0
388	Xâ€linked hereditary hemihypotrophy hemiparesis hemiathetosis. American Journal of Medical Genetics, Part A, 2010, 152A, 2727-2730.	1.2	0
389	Reply: Sagging and swelling of the midbrain suggest spontaneous intracranial hypotension rather than a malformation. Brain, 2010, 133, e149-e149.	7.6	0
390	Variability of epilepsy, autism, brachydactyly, and other clinical features in familial and sporadic 2q37.3 deletion. Journal of Pediatric Neurology, 2015, 07, 279-283.	0.2	0
391	Progress in autism research and postgenomic studies – Authors' reply. Lancet Neurology, The, 2016, 15, 136-137.	10.2	0
392	Overview of Human Brain Malformations. , 2017, , 179-182.		0
393	Bilateral polymicrogyria associated with dystonia: A new neurogenetic syndrome?. American Journal of Medical Genetics, Part A, 2020, 182, 2207-2213.	1.2	0
394	Reply to Hsueh YP et al European Journal of Human Genetics, 2020, 28, 999-999.	2.8	0
395	Mary Ella Mascia Pierpont: Geneticist, scientist, mentor, friend (1945–2020). American Journal of Medical Genetics, Part A, 2021, 185, 319-323. 	1.2	0
396	The Names of Things: The 2018 Bernard Sachs Lecture. Pediatric Neurology, 2021, 122, 41-49.	2.1	0

#	Article	IF	CITATIONS
397	Response to Hamosh etÂal American Journal of Human Genetics, 2021, 108, 1809-1810.	6.2	0
398	Pathological subtypes of polymicrogyria and brain development. FASEB Journal, 2007, 21, A75.	0.5	0
399	Experimental Models of Cortical Malformations. , 1999, , 15-18.		0
400	Epidermal Nevus Syndrome. , 1999, , 77-80.		0
401	Molecular Genetics and Vascular Anomalies. , 2018, , 21-24.		ο