Shaun L Cloherty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6070519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Robust coding of eye position in posterior parietal cortex despite context-dependent tuning. Journal of Neuroscience, 2022, , JN-RM-0674-21.	1.7	0
2	Liquid-Crystal Display (LCD) of achromatic, mean-modulated flicker in clinical assessment and experimental studies of visual systems. PLoS ONE, 2021, 16, e0248180.	1.1	6
3	Motion Perception in the Common Marmoset. Cerebral Cortex, 2020, 30, 2659-2673.	1.6	10
4	Mechanisms of Feature Selectivity and Invariance in Primary Visual Cortex. Cerebral Cortex, 2020, 30, 5067-5087.	1.6	13
5	Contrast-dependent phase sensitivity in area MT of macaque visual cortex. NeuroReport, 2019, 30, 195-201.	0.6	0
6	Comparison of contrast-dependent phase sensitivity in primary visual cortex of mouse, cat and macaque. NeuroReport, 2019, 30, 960-965.	0.6	1
7	Synaptic Basis for Contrast-Dependent Shifts in Functional Identity in Mouse V1. ENeuro, 2019, 6, ENEURO.0480-18.2019.	0.9	6
8	Electrical receptive fields of retinal ganglion cells: Influence of presynaptic neurons. PLoS Computational Biology, 2018, 14, e1005997.	1.5	15
9	Psychophysical measurement of marmoset acuity and myopia. Developmental Neurobiology, 2017, 77, 300-313.	1.5	27
10	Prediction of cortical responses to simultaneous electrical stimulation of the retina. Journal of Neural Engineering, 2017, 14, 016006.	1.8	18
11	Neural Responses to Multielectrode Stimulation of Healthy and Degenerate Retina. , 2017, 58, 3770.		21
12	Long-term sensorimotor adaptation in the ocular following system of primates. PLoS ONE, 2017, 12, e0189030.	1.1	6
13	Spectral distribution of local field potential responses to electrical stimulation of the retina. Journal of Neural Engineering, 2016, 13, 036003.	1.8	15
14	Retinal ganglion cells: mechanisms underlying depolarization block and differential responses to high frequency electrical stimulation of ON and OFF cells. Journal of Neural Engineering, 2016, 13, 016017.	1.8	32
15	A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina. PLoS Computational Biology, 2016, 12, e1004849.	1.5	30
16	Frequency Responses of Rat Retinal Ganglion Cells. PLoS ONE, 2016, 11, e0157676.	1.1	13
17	Sensory experience modifies feature map relationships in visual cortex. ELife, 2016, 5, .	2.8	27
18	Prosthetic vision: devices, patient outcomes and retinal research. Australasian journal of optometry, The, 2015, 98, 395-410.	0.6	30

SHAUN L CLOHERTY

#	Article	IF	CITATIONS
19	Spatial phase sensitivity of complex cells in primary visual cortex depends on stimulus contrast. Journal of Neurophysiology, 2015, 114, 3326-3338.	0.9	12
20	Contrast and response gain control depend on cortical map architecture. European Journal of Neuroscience, 2015, 42, 2963-2973.	1.2	0
21	Saccade-induced image motion cannot account for post-saccadic enhancement of visual processing in primate MST. Frontiers in Systems Neuroscience, 2015, 9, 122.	1.2	3
22	Contrast-dependent phase sensitivity in V1 but not V2 of macaque visual cortex. Journal of Neurophysiology, 2015, 113, 434-444.	0.9	12
23	The effects of temperature changes on retinal ganglion cell responses to electrical stimulation. , 2015, 2015, 7506-9.		4
24	Optimizing the Electrical Stimulation of Retinal Ganglion Cells. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23, 169-178.	2.7	40
25	Efficacy of electrical stimulation of retinal ganglion cells with temporal patterns resembling light-evoked spike trains. , 2014, 2014, 1707-10.		2
26	A linear-nonlinear model accurately predicts cortical responses to simultaneous electrical stimulation with a retinal implant. BMC Neuroscience, 2014, 15, .	0.8	0
27	Stripe-rearing changes multiple aspects of the structure of primary visual cortex. NeuroImage, 2014, 95, 305-319.	2.1	2
28	Predicting the location of the axon initial segment using spike waveform analysis: simulations of retinal ganglion cell physiology. BMC Neuroscience, 2013, 14, .	0.8	0
29	Phase sensitivity of complex cells in primary visual cortex. Neuroscience, 2013, 237, 19-28.	1.1	21
30	Retinal ganglion cells electrophysiology: The effect of cell morphology on impulse waveform. , 2013, 2013, 2013, 2583-6.		0
31	Intrinsic physiological properties of rat retinal ganglion cells with a comparative analysis. Journal of Neurophysiology, 2012, 108, 2008-2023.	0.9	64
32	Epiretinal electrical stimulation and the inner limiting membrane in rat retina. , 2012, 2012, 2989-92.		5
33	Parameter-Optimized Model of Cardiovascular–Rotary Blood Pump Interactions. IEEE Transactions on Biomedical Engineering, 2010, 57, 254-266.	2.5	73
34	Differential changes in perceived contrast following contrast adaptation in humans. Vision Research, 2010, 50, 12-19.	0.7	1
35	Effects of saccades on visual processing in primate MSTd. Vision Research, 2010, 50, 2683-2691.	0.7	26
36	Complex cell receptive fields: evidence for a hierarchical mechanism. Journal of Physiology, 2010, 588, 3457-3470.	1.3	21

SHAUN L CLOHERTY

#	Article	IF	CITATIONS
37	Focal activation of primary visual cortex following supra-choroidal electrical stimulation of the retina: Intrinsic signal imaging and linear model analysis. , 2010, 2010, 6765-8.		1
38	Visual Perception: Saccadic Omission— Suppression or TemporalÂMasking?. Current Biology, 2009, 19, R493-R496.	1.8	37
39	Image Analysis for Microelectronic Retinal Prosthesis. IEEE Transactions on Biomedical Engineering, 2008, 55, 344-346.	2.5	12
40	Noninvasive Average Flow and Differential Pressure Estimation for an Implantable Rotary Blood Pump Using Dimensional Analysis. IEEE Transactions on Biomedical Engineering, 2008, 55, 2094-2101.	2.5	26
41	Saccadic Modulation of Neural Responses: Possible Roles in Saccadic Suppression, Enhancement, and Time Compression. Journal of Neuroscience, 2008, 28, 10952-10960.	1.7	88
42	NONINVASIVE DETECTION OF SUCTION IN AN IMPLANTABLE ROTARY BLOOD PUMP USING NEURAL NETWORKS. International Journal of Computational Intelligence and Applications, 2008, 07, 237-247.	0.6	18
43	Noninvasive Pulsatile Flow Estimation for an Implantable Rotary Blood Pump. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 1018-21.	0.5	8
44	Computational Model of Atrial Electrical Activation and Propagation. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 908-11.	0.5	15
45	Optical Imaging of Electrically Evoked Visual Signals in Cats: II. ICA "Harmonic Filtering" Noise Reduction. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 3380-3.	0.5	4
46	A Dynamic Lumped Parameter Model of the Left Ventricular Assisted Circulation. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 3990-3.	0.5	9
47	Optical Imaging of Electrically Evoked Visual Signals in Cats: I. Responses to Corneal and Intravitreal Electrical Stimulation. , 2007, 2007, 1635-8.		3
48	Classification of Physiologically Significant Pumping States in an Implantable Rotary Blood Pump: Patient Trial Results. ASAIO Journal, 2007, 53, 617-622.	0.9	14
49	Noninvasive Average Flow Estimation for an Implantable Rotary Blood Pump: A New Algorithm Incorporating the Role of Blood Viscosity. Artificial Organs, 2007, 31, 45-52.	1.0	45
50	Classification of Physiologically Significant Pumping States in an Implantable Rotary Blood Pump: Effects of Cardiac Rhythm Disturbances. Artificial Organs, 2007, 31, 476-479.	1.0	11
51	Identification and Classification of Physiologically Significant Pumping States in an Implantable Rotary Blood Pump. Artificial Organs, 2006, 30, 671-679.	1.0	49
52	A Comparison of 1-D Models of Cardiac Pacemaker Heterogeneity. IEEE Transactions on Biomedical Engineering, 2006, 53, 164-177.	2.5	12
53	Psychophysics of Prosthetic Vision: III. Stochastic Rendering, the Phosphene Image, and Perception. , 2006, 2006, 1169-72.		4
54	Automated Non-invasive Detection of Pumping States in an Implantable Rotary Blood Pump. , 2006, 2006,		9

5386-9.

SHAUN L CLOHERTY

#	Article	IF	CITATIONS
55	Psychophysics of Prosthetic Vision: II. Stochastic Sampling, the Phosphene Image, and Noise. , 2006, 2006, 1634-7.		5
56	Psychophysics of Prosthetic Vision: III. Stochastic Rendering, the Phosphene Image, and Perception. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0
57	Psychophysics of Prosthetic Vision: II. Stochastic Sampling, the Phosphene Image, and Noise. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0
58	Current Distribution During Parallel Stimulation: Implications for an Epiretinal Neuroprosthesis. , 2005, 2005, 5242-5.		10
59	Qualitative Support for the Gradient Model of Cardiac Pacemaker Heterogeneity. , 2005, 2006, 133-6.		9
60	AFL and FRL: abstraction and representation for field interchange. , 2004, 2004, 5419-22.		1
61	A gradient model of cardiac pacemaker myocytes. Progress in Biophysics and Molecular Biology, 2004, 85, 301-323.	1.4	31
62	Vagal entrainment of heart rate is simulated by an integrator with feedback. Australasian Physical and Engineering Sciences in Medicine, 2001, 24, 86-94.	1.4	0
63	Inhomogeneity of action potential waveshape assists frequency entrainment of cardiac pacemaker cells. IEEE Transactions on Biomedical Engineering, 2001, 48, 1108-1115.	2.5	4
64	Simulated dynamic interaction of coupled sinoatrial node pacemaker cell pairs. , 0, , .		0
65	A 2D monodomain model of rabbit sinoatrial node. , 0, , .		3
66	Cell-specific ionic models of cardiac pacemaker activity. , 0, , .		2
67	A gradient model of the rabbit sinoatrial node. , 0, , .		Ο