
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6070039/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: Oxygen-Vacancy defect engineering and involved intermediates using in situ DRIFTS. Applied Catalysis B: Environmental, 2020, 264, 118464.	20.2	446
2	Evolution of oxygen vacancies in MnOx-CeO2 mixed oxides for soot oxidation. Applied Catalysis B: Environmental, 2018, 223, 91-102.	20.2	401
3	Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts. Applied Catalysis B: Environmental, 2018, 220, 462-470.	20.2	379
4	Shape effect of Pt/CeO 2 catalysts on the catalytic oxidation of toluene. Chemical Engineering Journal, 2016, 306, 1234-1246.	12.7	280
5	Controllable synthesis of 3D hierarchical Co ₃ O ₄ nanocatalysts with various morphologies for the catalytic oxidation of toluene. Journal of Materials Chemistry A, 2018, 6, 498-509.	10.3	268
6	Adsorption of VOCs on reduced graphene oxide. Journal of Environmental Sciences, 2018, 67, 171-178.	6.1	145
7	Toluene oxidation over Co3+-rich spinel Co3O4: Evaluation of chemical and by-product species identified by in situ DRIFTS combined with PTR-TOF-MS. Journal of Hazardous Materials, 2020, 386, 121957.	12.4	141
8	Gaseous CO and toluene co-oxidation over monolithic core–shell Co ₃ O ₄ -based hetero-structured catalysts. Journal of Materials Chemistry A, 2019, 7, 16197-16210.	10.3	134
9	Toluene oxidation process and proper mechanism over Co3O4 nanotubes: Investigation through in-situ DRIFTS combined with PTR-TOF-MS and quasi in-situ XPS. Chemical Engineering Journal, 2020, 397, 125375.	12.7	134
10	Unraveling the decisive role of surface CeO2 nanoparticles in the Pt-CeO2/MnO2 hetero-catalysts for boosting toluene oxidation: Synergistic effect of surface decorated and intrinsic O-vacancies. Chemical Engineering Journal, 2021, 418, 129399.	12.7	132
11	Flower-like BiOBr/UiO-66-NH2 nanosphere with improved photocatalytic property for norfloxacin removal. Chemosphere, 2019, 220, 98-106.	8.2	130
12	Microbial Targeted Degradation Pretreatment: A Novel Approach to Preparation of Activated Carbon with Specific Hierarchical Porous Structures, High Surface Areas, and Satisfactory Toluene Adsorption Performance. Environmental Science & Technology, 2019, 53, 7632-7640.	10.0	113
13	Effects of dielectric barrier discharge plasma on the catalytic activity of Pt/CeO2 catalysts. Applied Catalysis B: Environmental, 2018, 238, 328-338.	20.2	112
14	The Applications of Morphology Controlled ZnO in Catalysis. Catalysts, 2016, 6, 188.	3.5	110
15	Visible light photocatalytic degradation of tetracycline with porous Ag/graphite carbon nitride plasmonic composite: Degradation pathways and mechanism. Journal of Colloid and Interface Science, 2020, 574, 110-121.	9.4	105
16	<i>In situ</i> DRIFT spectroscopy insights into the reaction mechanism of CO and toluene co-oxidation over Pt-based catalysts. Catalysis Science and Technology, 2019, 9, 4538-4551.	4.1	103
17	Interfacial effects in hierarchically porous α-MnO2/Mn3O4 heterostructures promote photocatalytic oxidation activity. Applied Catalysis B: Environmental, 2020, 268, 118418.	20.2	100
18	Elucidating the special role of strong metal–support interactions in Pt/MnO ₂ catalysts for total toluene oxidation. Nanoscale Horizons, 2019, 4, 1425-1433.	8.0	78

#	Article	IF	CITATIONS
19	Metal organic framework derivative-TiO2 composite as efficient and durable photocatalyst for the degradation of toluene. Applied Catalysis B: Environmental, 2020, 267, 118667.	20.2	74
20	Insight into the effect of manganese substitution on mesoporous hollow spinel cobalt oxides for catalytic oxidation of toluene. Journal of Colloid and Interface Science, 2021, 594, 713-726.	9.4	70
21	Leaf-like Co-ZIF-L derivatives embedded on Co2AlO4/Ni foam from hydrotalcites as monolithic catalysts for toluene abatement. Journal of Hazardous Materials, 2019, 364, 571-580.	12.4	65
22	Enhancing catalytic toluene oxidation over MnO2@Co3O4 by constructing a coupled interface. Chinese Journal of Catalysis, 2020, 41, 1873-1883.	14.0	57
23	Effect of calcium addition in plasma catalysis for toluene removal by Ni/ZSM-5 : Acidity/basicity, catalytic activity and reaction mechanism. Journal of Hazardous Materials, 2020, 387, 122004.	12.4	48
24	The Mechanism of Non-thermal Plasma Catalysis on Volatile Organic Compounds Removal. Catalysis Surveys From Asia, 2018, 22, 73-94.	2.6	46
25	Carbon dioxide hydrogenation to methanol over Cu/ZrO2/CNTs: effect of carbon surface chemistry. RSC Advances, 2015, 5, 45320-45330.	3.6	44
26	Inhibition Effect of Phosphorus Poisoning on the Dynamics and Redox of Cu Active Sites in a Cu-SSZ-13 NH ₃ -SCR Catalyst for NO <i>_x</i> Reduction. Environmental Science & Technology, 2021, 55, 12619-12629.	10.0	43
27	Plasma-Assisted Surface Interactions of Pt/CeO2 Catalyst for Enhanced Toluene Catalytic Oxidation. Catalysts, 2019, 9, 2.	3.5	42
28	Synergistic effect of tunable oxygen-vacancy defects and graphene on accelerating the photothermal degradation of methanol over Co3O4/rGO nanocomposites. Chemical Engineering Journal, 2021, 425, 131658.	12.7	42
29	Enhancement of the non-thermal plasma-catalytic system with different zeolites for toluene removal. RSC Advances, 2015, 5, 72113-72120.	3.6	41
30	Modulate the metal support interactions to optimize the surface-interface features of Pt/CeO2 catalysts for enhancing the toluene oxidation. Journal of Hazardous Materials, 2022, 424, 127505.	12.4	40
31	Insights into CO2 adsorption on KOH-activated biochars derived from the mixed sewage sludge and pine sawdust. Science of the Total Environment, 2022, 826, 154133.	8.0	40
32	TiO ₂ @UiOâ€66 Composites with Efficient Adsorption and Photocatalytic Oxidation of VOCs: Investigation of Synergistic Effects and Reaction Mechanism. ChemCatChem, 2021, 13, 581-591.	3.7	37
33	Insight into the roles of endogenous minerals in the activation of persulfate by graphitized biochar for tetracycline removal. Science of the Total Environment, 2021, 768, 144281.	8.0	35
34	Enhanced performance of low Pt loading amount on Pt-CeO2 catalysts prepared by adsorption method for catalytic ozonation of toluene. Applied Catalysis A: General, 2021, 625, 118342.	4.3	35
35	Controllable transformation from 1D Co-MOF-74 to 3D CoCO ₃ and Co ₃ O ₄ with ligand recovery and tunable morphologies: the assembly process and boosting VOC degradation. Journal of Materials Chemistry A, 2021, 9, 6890-6897.	10.3	34
36	Transient inâ€situ DRIFTS Investigation of Catalytic Oxidation of Toluene over αâ€, γ―and βâ€MnO _{2<!--<br-->ChemCatChem, 2020, 12, 1046-1054.}	sub}	33

#	Article	IF	CITATIONS
37	Morphology-activity correlation of electrospun CeO2 for toluene catalytic combustion. Chemosphere, 2020, 247, 125860.	8.2	32
38	Chemisorbed Superoxide Species Enhanced the High Catalytic Performance of Ag/Co ₃ O ₄ Nanocubes for Soot Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 21436-21449.	8.0	32
39	Plasma-Catalytic CO ₂ Hydrogenation over a Pd/ZnO Catalyst: <i>In Situ</i> Probing of Gas-Phase and Surface Reactions. Jacs Au, 2022, 2, 1800-1810.	7.9	32
40	Enhancement of catalytic toluene combustion over Pt–Co3O4 catalyst through in-situ metal-organic template conversion. Chemosphere, 2021, 262, 127738.	8.2	31
41	Nonthermal plasma catalysis for toluene decomposition over BaTiO3-based catalysts by Ce doping at A-sites: The role of surface-reactive oxygen species. Journal of Hazardous Materials, 2021, 405, 124156.	12.4	31
42	Highly efficient adsorptive removal of toluene using silicon-modified activated carbon with improved fire resistance. Journal of Hazardous Materials, 2021, 415, 125753.	12.4	28
43	Plasma-Catalytic Oxidation of Toluene on MnxOy at Atmospheric Pressure and Room Temperature. Plasma Chemistry and Plasma Processing, 2014, 34, 1141-1156.	2.4	26
44	Insight into the Improvement Effect of Nitrogen Dopant in Ag/Co3O4 Nanocubes for Soot Oxidation: Experimental and Theoretical Studies. Journal of Hazardous Materials, 2021, 420, 126604.	12.4	25
45	Unravelling Phosphorus-Induced Deactivation of Pd-SSZ-13 for Passive NO _{<i>x</i>} Adsorption and CO Oxidation. ACS Catalysis, 2021, 11, 13891-13901.	11.2	25
46	Renewable biochar derived from mixed sewage sludge and pine sawdust for carbon dioxide capture. Environmental Pollution, 2022, 306, 119399.	7.5	25
47	Construction of Cu-Ce interface for boosting toluene oxidation: Study of Cu-Ce interaction and intermediates identified by in situ DRIFTS. Chinese Chemical Letters, 2021, 32, 3435-3439.	9.0	24
48	The lanthanide doping effect on toluene catalytic oxidation over Pt/CeO2 catalyst. Journal of Colloid and Interface Science, 2022, 614, 33-46.	9.4	22
49	Analysis of the characteristics of phosphine production by anaerobic digestion based on microbial community dynamics, metabolic pathways, and isolation of the phosphate-reducing strain. Chemosphere, 2021, 262, 128213.	8.2	21
50	Catalytic Performance of Toluene Combustion over Pt Nanoparticles Supported on Pore-Modified Macro-Meso-Microporous Zeolite Foam. Nanomaterials, 2020, 10, 30.	4.1	19
51	Pt/MnOx for toluene mineralization via ozonation catalysis at low temperature: SMSI optimization of surface oxygen species. Chemosphere, 2022, 286, 131754.	8.2	18
52	Reverse water-gas shift in a packed bed DBD reactor: Investigation of metal-support interface towards a better understanding of plasma catalysis. Applied Catalysis A: General, 2020, 591, 117407.	4.3	17
53	In-situ atmosphere thermal pyrolysis of spindle-like Ce(OH)CO3 to fabricate Pt/CeO2 catalysts: Enhancing Pt–O–Ce bond intensity and boosting toluene degradation. Chemosphere, 2021, 279, 130658.	8.2	17
54	A high-performance and stable Cu/Beta for adsorption-catalytic oxidation in-situ destruction of low concentration toluene. Science of the Total Environment, 2022, 833, 155288.	8.0	16

#	Article	IF	CITATIONS
55	Removal of toluene in adsorption–discharge plasma systems over a nickel modified SBA-15 catalyst. RSC Advances, 2016, 6, 104104-104111.	3.6	15
56	Macroporous Ni foam-supported Co3O4 nanobrush and nanomace hybrid arrays for high-efficiency CO oxidation. Journal of Environmental Sciences, 2019, 75, 136-144.	6.1	15
57	CeO2-Supported Pt Catalysts Derived from MOFs by Two Pyrolysis Strategies to Improve the Oxygen Activation Ability. Nanomaterials, 2020, 10, 983.	4.1	15
58	Cu-VWT Catalysts for Synergistic Elimination of NO _{<i>x</i>} and Volatile Organic Compounds from Coal-Fired Flue Gas. Environmental Science & Technology, 2022, 56, 10095-10104.	10.0	15
59	Effect of oxygen vacancy on the oxidation of toluene by ozone over Ag-Ce catalysts at low temperature. Applied Surface Science, 2022, 601, 154237.	6.1	15
60	Macroscopic Hexagonal Co ₃ O ₄ Tubes Derived from Controllable Two-Dimensional Metal-Organic Layer Single Crystals: Formation Mechanism and Catalytic Activity. Inorganic Chemistry, 2020, 59, 3062-3071.	4.0	13
61	Effects of Zr substitution on soot combustion over cubic fluorite-structured nanoceria: Soot-ceria contact and interfacial oxygen evolution. Journal of Environmental Sciences, 2021, 101, 293-303.	6.1	12
62	The Study of Reverse Water Gas Shift Reaction Activity over Different Interfaces: The Design of Cu-Plate ZnO Model Catalysts. Catalysts, 2020, 10, 533.	3.5	11
63	Investigation into the roles of different oxygen species in toluene oxidation over manganese-supported platinum catalysts. Molecular Catalysis, 2021, 507, 111569.	2.0	10
64	Interfaces in MOF-Derived CeO2–MnOX Composites as High-Activity Catalysts for Toluene Oxidation: Monolayer Dispersion Threshold. Catalysts, 2020, 10, 681.	3.5	9
65	Effect of plasma on catalytic conversion of CO ₂ with hydrogen over Pd/ZnO in a dielectric barrier discharge reactor. Journal Physics D: Applied Physics, 2019, 52, 244001.	2.8	8
66	Unraveling specific role of carbon matrix over Pd/quasi-Ce-MOF facilitating toluene enhanced degradation. Journal of Rare Earths, 2022, 40, 1751-1762.	4.8	7
67	Tuning the local electronic structure of SrTiO3 catalysts to boost plasma-catalytic interfacial synergy. Journal of Hazardous Materials, 2022, 428, 128172.	12.4	7
68	Porous stainless-steel fibers supported CuCeFeOx/Zeolite catalysts for the enhanced CO oxidation: Experimental and kinetic studies. Chemosphere, 2022, 291, 132778.	8.2	6