Liangliang Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/606940/publications.pdf

Version: 2024-02-01

155 papers 10,618 citations

28242 55 h-index 99 g-index

162 all docs 162 docs citations

times ranked

162

10540 citing authors

#	Article	IF	CITATIONS
1	Organoboron luminophores with extremely strong dual–phase emissions. Chinese Chemical Letters, 2023, 34, 107612.	4.8	3
2	Achieving purely organic room temperature phosphorescence in aqueous solution. Aggregate, 2023, 4,	5.2	36
3	Large red-shifted NIR absorption in azulenyl- and iodinated-modified BODIPYs sensitive to aggregation and protonation stimuli. Dyes and Pigments, 2022, 197, 109867.	2.0	6
4	Solarâ€Initiated Frontal Polymerization of Photothermic Hydrogels with High Swelling Properties for Efficient Water Evaporation. Solar Rrl, 2022, 6, 2100917.	3.1	10
5	Gel Materials with Rubberâ€Rubbingâ€Chromic Luminescence: A Portable Tool for Onâ€5pot Composing Highly Encrypted Information. Advanced Optical Materials, 2022, 10, .	3.6	8
6	Mechanical stimuli-induced multiple photophysical responsive AlEgens with high contrast properties. Chemical Communications, 2022, 58, 3517-3520.	2.2	13
7	One-Dimensional Helical Aggregates Organized from Achiral Imine-Based Polymers. , 2022, 4, 715-723.		6
8	Water molecular bridge-induced selective dual polarization in crystals for stable multi-emitters. Chemical Science, 2022, 13, 6067-6073.	3.7	3
9	Two-Stage Three-Dimensional Luminescent Sensing Strategy for Precisely Detecting a Wide Range of Water Content in Tetrahydrofuran. Analytical Chemistry, 2022, 94, 7004-7011.	3.2	5
10	Ultralong-Lived Up-Conversional Room-Temperature Afterglow Materials with a Polyvinyl Alcohol Substrate. Polymers, 2022, 14, 2414.	2.0	3
11	Highâ€Performance Integrated Solar Steam Generator for Synergetic Freshwater Production, Salt Harvesting, and Electricity Generation. Solar Rrl, 2022, 6, .	3.1	14
12	Circularly Polarized Luminescence and Dynamic Regulation Based on the co-Assembly of $\langle i>L< i>\rangle < i>L> i>-Lysine Hydrochloride and Photoactivated AIE Molecules. Acta Chimica Sinica, 2022, 80, 647.$	0.5	2
13	Imaging moiety-directed co-assembly for biodegradation control with synchronous four-modal biotracking. Biomaterials, 2022, 287, 121665.	5.7	7
14	Producing long afterglow by cellulose confinement effect: A wood-inspired design for sustainable phosphorescent materials. Carbon, 2021, 171, 946-952.	5 . 4	41
15	Highly tunable aggregate-induced phosphorescence properties in persulfurated arenes. Dyes and Pigments, 2021, 186, 109032.	2.0	15
16	Controlling Ultra‣arge Optical Asymmetry in Amorphous Molecular Aggregations. Angewandte Chemie - International Edition, 2021, 60, 3672-3678.	7.2	18
17	Controlling Ultraâ€Large Optical Asymmetry in Amorphous Molecular Aggregations. Angewandte Chemie, 2021, 133, 3716-3722.	1.6	9
18	Small-molecule based thermally activated delayed fluorescence materials with dual-emission characteristics. Science China Chemistry, 2021, 64, 534-546.	4.2	29

#	Article	IF	Citations
19	Manipulating crystals through photoexcitation-induced molecular realignment. Journal of Materials Chemistry C, 2021, 9, 11707-11714.	2.7	25
20	Armored colloidal photonic crystals for solar evaporation. Nanoscale, 2021, 13, 16189-16196.	2.8	5
21	A chiral single-component sol–gel platform with highly integrated optical properties. Journal of Materials Chemistry C, 2021, 9, 4275-4280.	2.7	16
22	Lighting up solid states using a rubber. Nature Communications, 2021, 12, 908.	5.8	21
23	Self-contained Janus Aerogel with Antifouling and Salt-Rejecting Properties for Stable Solar Evaporation. ACS Applied Materials & Interfaces, 2021, 13, 18829-18837.	4.0	86
24	Flying Squirrel-Inspired Motion Control of a Light-Deformed Pt-PAzoMA Micromotor through Drag Force Manipulation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 30106-30117.	4.0	9
25	Visualizing Material Processing via Photoexcitation-Controlled Organic-Phase Aggregation-Induced Emission. Research, 2021, 2021, 9862093.	2.8	13
26	Rational Design of Diphenyldiacetyleneâ€Based Fluorescent Materials Enabling a 365â€nm Lightâ€Initiated Topochemical Polymerization. Chemistry - an Asian Journal, 2021, 16, 2048-2054.	1.7	2
27	Enhancing the Operability of Photoexcitation-Controlled Aggregation-Induced Emissive Molecules in the Organic Phase. Journal of Physical Chemistry Letters, 2021, 12, 6182-6189.	2.1	20
28	The stepwise photochromic reactivity of diarylethene tuned by selective ions and fabrication of a molecular logic circuit. Dyes and Pigments, 2021, 191, 109361.	2.0	6
29	Conformal Microfluidicâ€Blowâ€Spun 3D Photothermal Catalytic Spherical Evaporator for Omnidirectional Enhanced Solar Steam Generation and CO ₂ Reduction. Advanced Science, 2021, 8, e2101232.	5.6	68
30	Photoinduced Radical Emission in a Coassembly System. Angewandte Chemie - International Edition, 2021, 60, 23842-23848.	7.2	43
31	Photoinduced Radical Emission in a Coassembly System. Angewandte Chemie, 2021, 133, 24035.	1.6	8
32	Versatile titanium dioxide inverse opal composite photonic hydrogel films towards multi-solvents chip sensors. Sensors and Actuators B: Chemical, 2021, 347, 130639.	4.0	22
33	Multidimensional Structure Conformation of Persulfurated Benzene for Highly Efficient Phosphorescence. ACS Applied Materials & Interfaces, 2021, 13, 1314-1322.	4.0	13
34	Carbon Dot-Functionalized Colloidal Particles for Patterning and Controllable Layer-Structured Photonic Crystals Construction. ACS Applied Polymer Materials, 2021, 3, 6130-6137.	2.0	6
35	Rigid Polymer Network-Based Autonomous Photoswitches Working in the Solid State Encoded by Room-Temperature Phosphorescence. Langmuir, 2021, 37, 14398-14406.	1.6	5
36	Gel Systems Doped with Chiral Carbon Dots for Optical Combination. ACS Applied Nano Materials, 2020, 3, 946-952.	2.4	24

#	Article	IF	CITATIONS
37	Molecular Engineering for Metalâ€Free Amorphous Materials with Roomâ€Temperature Phosphorescence. Angewandte Chemie - International Edition, 2020, 59, 11206-11216.	7.2	322
38	Molecular Engineering for Metalâ€Free Amorphous Materials with Roomâ€Temperature Phosphorescence. Angewandte Chemie, 2020, 132, 11302-11312.	1.6	65
39	Integrating Timeâ€Resolved Imaging Information by Singleâ€Luminophore Dual Thermally Activated Delayed Fluorescence. Angewandte Chemie, 2020, 132, 17166-17173.	1.6	17
40	Integrating Timeâ€Resolved Imaging Information by Singleâ€Luminophore Dual Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2020, 59, 17018-17025.	7.2	58
41	Rù¼cktitelbild: Integrating Timeâ€Resolved Imaging Information by Singleâ€Luminophore Dual Thermally Activated Delayed Fluorescence (Angew. Chem. 39/2020). Angewandte Chemie, 2020, 132, 17456-17456.	1.6	0
42	An excitation-dependent ratiometric dual-emission strategy for the large-scale enhancement of fluorescent tint control. Nanoscale, 2020, 12, 12773-12778.	2.8	9
43	Fluorescence to multi-colored phosphorescence interconversion of a novel, asterisk-shaped luminogen <i>via</i> multiple external stimuli. Chemical Communications, 2020, 56, 4336-4339.	2.2	23
44	Chirality Transfer in Carbon Dot-Composited Sol–Gel Systems for Excitation-Dependent Circularly Polarized Luminescence. Langmuir, 2020, 36, 8965-8970.	1.6	24
45	Facile synthesis of red dual-emissive carbon dots for ratiometric fluorescence sensing and cellular imaging. Nanoscale, 2020, 12, 5494-5500.	2.8	68
46	Dualâ€Phase Thermally Activated Delayed Fluorescence Luminogens: A Material for Timeâ€Resolved Imaging Independent of Probe Pretreatment and Probe Concentration. Angewandte Chemie, 2020, 132, 7618-7624.	1.6	7
47	Engineering stable radicals using photochromic triggers. Nature Communications, 2020, 11, 945.	5.8	25
48	Dualâ€Phase Thermally Activated Delayed Fluorescence Luminogens: A Material for Timeâ€Resolved Imaging Independent of Probe Pretreatment and Probe Concentration. Angewandte Chemie - International Edition, 2020, 59, 7548-7554.	7.2	46
49	A Fluorescence–Phosphorescence–Phosphorescence Tripleâ€Channel Emission Strategy for Fullâ€Color Luminescence. Small, 2020, 16, e1906475.	5.2	45
50	Photothermal Catalytic Gel Featuring Spectral and Thermal Management for Parallel Freshwater and Hydrogen Production. Advanced Energy Materials, 2020, 10, 2000925.	10.2	162
51	A monomolecular platform with varying gated photochromism. RSC Advances, 2020, 10, 42194-42199.	1.7	8
52	Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy and Environmental Science, 2019, 12, 841-864.	15.6	1,235
53	Multiwavelength Anti-Kasha's Rule Emission on Self-Assembly of Azulene-Functionalized Persulfurated Arene. Journal of Physical Chemistry C, 2019, 123, 22511-22518.	1.5	29
54	Structural Engineering of Luminogens with High Emission Efficiency Both in Solution and in the Solid State. Angewandte Chemie, 2019, 131, 11541-11545.	1.6	21

#	Article	IF	CITATIONS
55	Orthogonally Incorporating Dualâ€Fluorescence Control into Gated Photochromism for Multifunctional Molecular Switching. Chemistry - A European Journal, 2019, 25, 15281-15287.	1.7	17
56	The unusual physicochemical properties of azulene and azulene-based compounds. Chinese Chemical Letters, 2019, 30, 1903-1907.	4.8	30
57	Chirality Transfer in Coassembled Organogels Enabling Wide-Range Naked-Eye Enantiodifferentiation. ACS Nano, 2019, 13, 12438-12444.	7. 3	43
58	Crystal Multiâ€Conformational Control Through Deformable Carbonâ€Sulfur Bond for Singletâ€Triplet Emissive Tuning. Angewandte Chemie - International Edition, 2019, 58, 4328-4333.	7.2	82
59	Directed Selfâ€Assembly of Templatable Block Copolymers by Easily Accessible Magnetic Control. Small, 2019, 15, e1804572.	5.2	20
60	Structural Engineering of Luminogens with High Emission Efficiency Both in Solution and in the Solid State. Angewandte Chemie - International Edition, 2019, 58, 11419-11423.	7.2	133
61	Synthesis and Bioactivities Evaluation of Novel Anthranilic Diamides Containing <i>N</i> â€(<i>tert</i> â€Butyl)benzohydrazide Moiety as Potent Ryanodine Receptor Activator. Chinese Journal of Chemistry, 2019, 37, 605-610.	2.6	7
62	Shape Conformal and Thermal Insulative Organic Solar Absorber Sponge for Photothermal Water Evaporation and Thermoelectric Power Generation. Advanced Energy Materials, 2019, 9, 1900250.	10.2	286
63	Dynamic Modulation of Supramolecular Chirality Driven by Factors from Internal to External Levels. Chemistry - an Asian Journal, 2019, 14, 2172-2180.	1.7	21
64	Crystal Multiâ€Conformational Control Through Deformable Carbonâ€Sulfur Bond for Singletâ€√riplet Emissive Tuning. Angewandte Chemie, 2019, 131, 4372-4377.	1.6	28
65	Photoexcitation-controlled self-recoverable molecular aggregation for flicker phosphorescence. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4816-4821.	3.3	95
66	A three-dimensional ratiometric sensing strategy on unimolecular fluorescence–thermally activated delayed fluorescence dual emission. Nature Communications, 2019, 10, 731.	5.8	80
67	High-contrast flicker luminescence on dynamic covalent structure based nanoaggregates. Science China Chemistry, 2019, 62, 220-225.	4.2	13
68	Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications. Nano Energy, 2019, 57, 507-518.	8.2	597
69	A unimolecular platform based on diarylethene with multiple stimuli-gated photochromism. Dyes and Pigments, 2019, 164, 91-96.	2.0	15
70	Non-conjugated and π-conjugated functional ligands on semiconductive quantum dots. Composites Communications, 2019, 11, 21-26.	3.3	6
71	A New Dicyano-vinyl Modified Difurylperhydrocyclopentene Photoswitch: Fluorescent Properties, Sensing Ability and <i>in vivo</i> Application. Chinese Journal of Organic Chemistry, 2019, 39, 2492.	0.6	2
72	Engineering Rotaxane-Based Nanoarchitectures via Topochemical Photo-Cross-Linking. Macromolecules, 2018, 51, 746-754.	2.2	8

#	Article	IF	CITATIONS
73	Selfâ€Contained Monolithic Carbon Sponges for Solarâ€Driven Interfacial Water Evaporation Distillation and Electricity Generation. Advanced Energy Materials, 2018, 8, 1702149.	10.2	430
74	Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Materials Horizons, 2018, 5, 323-343.	6.4	513
75	Diarylethenes with a Narrow Singlet–Triplet Energy Gap Sensitizer: a Simple Strategy for Efficient Visible‣ight Photochromism. Advanced Optical Materials, 2018, 6, 1700847.	3.6	37
76	Rational Design of a Green-Light-Mediated Unimolecular Platform for Fast Switchable Acidic Sensing. Journal of Physical Chemistry Letters, 2018, 9, 550-556.	2.1	36
77	Involving Synergy of Green Light and Acidic Responses in Control of Unimolecular Multicolor Luminescence. Chemistry - A European Journal, 2018, 24, 10306-10309.	1.7	13
78	Dispersibility of carbon dots in aqueous and/or organic solvents. Chemical Communications, 2018, 54, 5401-5406.	2,2	92
79	Topochemical polymerization of diphenyldiacetylene-based materials and the relevant application in photocatalysis. Chinese Chemical Letters, 2018, 29, 1591-1600.	4.8	8
80	One-step solvothermal synthesis of high-emissive amphiphilic carbon dots <i>via</i> rigidity derivation. Chemical Science, 2018, 9, 1323-1329.	3.7	71
81	Precisely Controlling Dimerization and Trimerization in Topochemical Reaction Templated by Biomacromolecules. Macromolecules, 2018, 51, 8038-8045.	2.2	4
82	Hybrid Photothermal Pyroelectric and Thermogalvanic Generator for Multisituation Low Grade Heat Harvesting. Advanced Energy Materials, 2018, 8, 1802397.	10.2	103
83	Anti-Kasha's Rule Emissive Switching Induced by Intermolecular H-Bonding. Chemistry of Materials, 2018, 30, 8008-8016.	3.2	75
84	Synthesis and Bioactivity Evaluation of Novel N-Pyridylpyrazolemethanamine Derivatives. Chemical Research in Chinese Universities, 2018, 34, 744-750.	1.3	0
85	Synthesis and insecticidal activity study of novel anthranilic diamides analogs containing a diacylhydrazine bridge as effective Ca ²⁺ modulators. Chemical Biology and Drug Design, 2018, 92, 1914-1919.	1.5	7
86	Solar Absorber Gel: Localized Macroâ€Nano Heat Channeling for Efficient Plasmonic Au Nanoflowers Photothermic Vaporization and Triboelectric Generation. Advanced Energy Materials, 2018, 8, 1800711.	10.2	256
87	Controlling Supramolecular Chirality of Two-Component Hydrogels by <i>J</i> - and <i>H</i> -Aggregation of Building Blocks. Journal of the American Chemical Society, 2018, 140, 6467-6473.	6.6	165
88	In-built thermo-mechanical cooperative feedback mechanism for self-propelled multimodal locomotion and electricity generation. Nature Communications, 2018, 9, 3438.	5.8	117
89	Carbon Sponges: Selfâ€Contained Monolithic Carbon Sponges for Solarâ€Driven Interfacial Water Evaporation Distillation and Electricity Generation (Adv. Energy Mater. 16/2018). Advanced Energy Materials, 2018, 8, 1870074.	10.2	6
90	Synthesis and Bioactivities Evaluation of Novel N-Pyridylpyrazole Derivatives with $1,2,3$ -Triazole and Quinazolin- $4(3H)$ -one Substructures. Heterocycles, $2018, 96, 1453$.	0.4	2

#	Article	IF	Citations
91	Molecular stacking dependent phosphorescence–fluorescence dual emission in a single luminophore for self-recoverable mechanoconversion of multicolor luminescence. Chemical Communications, 2017, 53, 2661-2664.	2.2	90
92	Controlled Movement of Cucurbiturils in Host–Guest Systems. ChemPlusChem, 2017, 82, 30-41.	1.3	27
93	Tuning for Visible Fluorescence and Near-Infrared Phosphorescence on a Unimolecular Mechanically Sensitive Platform via Adjustable CHâ^Ï€ Interaction. ACS Applied Materials & Diterfaces, 2017, 9, 3865-3872.	4.0	56
94	Solvent-dependent self-assembly and morphological transition of low-molecular-weight azobenzene organogel. Tetrahedron, 2017, 73, 4891-4895.	1.0	14
95	Substrateâ€Friendly Growth of Largeâ€Sized Ni(OH) ₂ Nanosheets for Flexible Electrochromic Films. Small, 2017, 13, 1700084.	5.2	39
96	Cu ²⁺ -Selectivity gated photochromism in Schiff-modified diarylethenes with a star-shaped structure. Journal of Materials Chemistry C, 2017, 5, 282-289.	2.7	34
97	Fastâ€Clearable Nanocarriers Conducting Chemo/Photothermal Combination Therapy to Inhibit Recurrence of Malignant Tumors. Small, 2017, 13, 1700963.	5.2	57
98	Frontispiece: Selective Dualâ€Channel Imaging on Cyanostyrylâ€Modified Azulene Systems with Unimolecularly Tunable Visible–Near Infrared Luminescence. Chemistry - A European Journal, 2017, 23, .	1.7	0
99	Bifunctional 2D-on-2D MoO ₃ nanobelt/Ni(OH) ₂ nanosheets for supercapacitor-driven electrochromic energy storage. Journal of Materials Chemistry A, 2017, 5, 8343-8351.	5.2	106
100	Selective Dualâ€Channel Imaging on Cyanostyrylâ€Modified Azulene Systems with Unimolecularly Tunable Visible–Near Infrared Luminescence. Chemistry - A European Journal, 2017, 23, 7642-7647.	1.7	87
101	Helical Self-Assembly-Induced Singlet–Triplet Emissive Switching in a Mechanically Sensitive System. Journal of the American Chemical Society, 2017, 139, 785-791.	6.6	153
102	A reversible single-molecule switch based on activated antiaromaticity. Science Advances, 2017, 3, eaao2615.	4.7	94
103	A photochromic prototype based on difurylperhydrocyclopentene with remarkable photoswitching behavior and in vivo application. Chemical Communications, 2017, 53, 9570-9573.	2.2	12
104	Self-twisting for macrochirality from an achiral asterisk molecule with fluorescence-phosphorescence dual emission. Chinese Chemical Letters, 2017, 28, 2151-2154.	4.8	15
105	Helicity Inversion of Supramolecular Hydrogels Induced by Achiral Substituents. ACS Nano, 2017, 11, 11880-11889.	7. 3	74
106	Electrodeposited cobalt phosphide superstructures for solar-driven thermoelectrocatalytic overall water splitting. Journal of Materials Chemistry A, 2017, 5, 16580-16584.	5.2	54
107	Hierarchical Heterostructure of TiO 2 Nanosheets on CuO Nanowires for Enhanced Photocatalytic Performance. Procedia Engineering, 2017, 215, 180-187.	1.2	4
108	Functionalization of TiO 2 Nanofibers with Ag and Ag 2 S Nanoparticles for Enhanced Photocatalytic Hydrogen Generation. Procedia Engineering, 2017, 215, 188-194.	1.2	5

#	Article	IF	Citations
109	Ï€ -Conjugated cyanostilbene-based optoelectric functional materials. Chinese Chemical Letters, 2016, 27, 1155-1165.	4.8	30
110	Cyclodextrin-based ordered rotaxane-monolayers at gold surfaces. RSC Advances, 2016, 6, 73527-73533.	1.7	2
111	In situ chemical etching of tunable 3D Ni ₃ S ₂ superstructures for bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 13916-13922.	5.2	117
112	Sequential Block Copolymer Self-Assemblies Controlled by Metal–Ligand Stoichiometry. Langmuir, 2016, 32, 6429-6436.	1.6	12
113	Rational Integration of Inbuilt Aperture with Mesoporous Framework in Unusual Asymmetrical Yolk–Shell Structures for Energy Storage and Conversion. ACS Applied Materials & Interfaces, 2016, 8, 32901-32909.	4.0	20
114	Sequential oligodiacetylene formation for progressive luminescent color conversion via co-micellar strategy. Chemical Science, 2016, 7, 2058-2065.	3.7	34
115	Design of a Metal Oxide–Organic Framework (MoOF) Foam Microreactor: Solarâ€Induced Direct Pollutant Degradation and Hydrogen Generation. Advanced Materials, 2015, 27, 7713-7719.	11.1	86
116	TiO2 Fibers Supported \hat{l}^2 -FeOOH Nanostructures as Efficient Visible Light Photocatalyst and Room Temperature Sensor. Scientific Reports, 2015, 5, 10601.	1.6	73
117	Unimolecular Photopolymerization of High-Emissive Materials on Cylindrical Self-Assemblies. Macromolecules, 2015, 48, 5099-5105.	2.2	13
118	Structural design of TiO ₂ -based photocatalyst for H ₂ production and degradation applications. Catalysis Science and Technology, 2015, 5, 4703-4726.	2.1	223
119	Hierarchical Assembly of SnO2/ZnO Nanostructures for Enhanced Photocatalytic Performance. Scientific Reports, 2015, 5, 11609.	1.6	94
120	Fabrication of wheat grain textured TiO2/CuO composite nanofibers for enhanced solar H2 generation and degradation performance. Nano Energy, 2015, 11, 28-37.	8.2	157
121	Microfluidic assembly of uniform fluorescent microbeads from quantumâ€dotâ€loaded fluorineâ€containing microemulsion. Polymer International, 2014, 63, 1953-1958.	1.6	3
122	Supramolecular nanoparticle carriers self-assembled from cyclodextrin- and adamantane-functionalized polyacrylates for tumor-targeted drug delivery. Journal of Materials Chemistry B, 2014, 2, 1879.	2.9	73
123	Aggregation-induced chiral symmetry breaking of a naphthalimide–cyanostilbene dyad. Physical Chemistry Chemical Physics, 2014, 16, 23854-23860.	1.3	16
124	Engineering Topochemical Polymerizations Using Block Copolymer Templates. Journal of the American Chemical Society, 2014, 136, 13381-13387.	6.6	65
125	lron(III)â€Quantityâ€Dependent Aggregation–Dispersion Conversion of Functionalized Gold Nanoparticles. Chemistry - A European Journal, 2014, 20, 4032-4037.	1.7	17
126	Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding. Journal of Materials Chemistry C, 2013, 1, 4925.	2.7	275

#	Article	IF	CITATIONS
127	Photoinduced Charge Transfer within Polyaniline-Encapsulated Quantum Dots Decorated on Graphene. ACS Applied Materials & Samp; Interfaces, 2013, 5, 8105-8110.	4.0	36
128	Microfluidic-directed assembly of uniform fluorescent supraballs from CdTe nanocrystals-loaded acrylosilane microemulsion. Colloid and Polymer Science, 2013, 291, 2147-2154.	1.0	1
129	Engineering a Hollow Nanocontainer Platform with Multifunctional Molecular Machines for Tumor-Targeted Therapy <i>ii) Vitro</i> ii) and <i>ii) Vivo</i> ii) ACS Nano, 2013, 7, 10271-10284.	7.3	212
130	Cyanostilbene-based intelligent organic optoelectronic materials. Journal of Materials Chemistry C, 2013, 1, 1059-1065.	2.7	162
131	Host–guest complexation driven dynamic supramolecular self-assembly. Organic and Biomolecular Chemistry, 2013, 11, 2070.	1.5	84
132	Unimolecular Photoconversion of Multicolor Luminescence on Hierarchical Self-Assemblies. Journal of the American Chemical Society, 2013, 135, 5175-5182.	6.6	144
133	Chirality Control for in Situ Preparation of Gold Nanoparticle Superstructures Directed by a Coordinatable Organogelator. Journal of the American Chemical Society, 2013, 135, 9174-9180.	6.6	68
134	Microporous polymelamine network for highly selective CO2 adsorption. Polymer, 2013, 54, 596-600.	1.8	43
135	Thermo-responsive fluorescent vesicles assembled by fluorescein-functionalized pillar[5]arene. RSC Advances, 2013, 3, 368-371.	1.7	85
136	Photothermal-responsive [2]rotaxanes. RSC Advances, 2013, 3, 2341.	1.7	12
137	Cyclodextrin-Based [1]Rotaxanes on Gold Nanoparticles. International Journal of Molecular Sciences, 2012, 13, 10132-10142.	1.8	15
138	A Photoswitchable [2]Rotaxane Array on Graphene Oxide. Asian Journal of Organic Chemistry, 2012, 1, 314-318.	1.3	17
139	Sequential self-assembly for construction of Pt(ii)-bridged [3]rotaxanes on gold nanoparticles. Chemical Communications, 2012, 48, 4290.	2.2	35
140	Photoswitchable Supramolecular Catalysis by Interparticle Host–Guest Competitive Binding. Chemistry - A European Journal, 2012, 18, 13979-13983.	1.7	58
141	Light-Controllable Cucurbit[7]uril-Based Molecular Shuttle. Journal of Organic Chemistry, 2012, 77, 10168-10175.	1.7	68
142	Luminescent Color Conversion on Cyanostilbeneâ€Functionalized Quantum Dots via Inâ€situ Photoâ€Tuning. Advanced Materials, 2012, 24, 4020-4024.	11.1	93
143	Functional Mesoporous Silica Nanoparticles for Photothermalâ€Controlled Drug Delivery Inâ€Vivo. Angewandte Chemie - International Edition, 2012, 51, 8373-8377.	7.2	290
144	Selective supramolecular bindings for stepwise signal output. Tetrahedron, 2012, 68, 79-84.	1.0	11

#	Article	IF	CITATIONS
145	Construction of Polypseudorotaxane from Low-Molecular Weight Monomers via Dual Noncovalent Interactions. Macromolecules, 2011, 44, 4092-4097.	2.2	98
146	Coordination-assembly for quantitative construction of bis-branched molecular shuttles. Organic and Biomolecular Chemistry, 2011, 9, 4226.	1.5	34
147	Dual-controllable stepwise supramolecular interconversions. Chemical Communications, 2010, 46, 2587.	2.2	67
148	Dual-mode tunable viscosity sensitivity of a rotor-based fluorescent dye. Tetrahedron, 2010, 66, 1254-1260.	1.0	37
149	Address-crossing digital information processing on a self-aggregatable cyclodextrin derivative based nanosystem. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2009, 4, 278-291.	0.4	5
150	Coordination-driven self-organization of switchable [2]rotaxane. Tetrahedron, 2009, 65, 9081-9085.	1.0	11
151	A new thermo- and photo-driven [2]rotaxane. Tetrahedron Letters, 2009, 50, 597-600.	0.7	21
152	Photolockable Ratiometric Viscosity Sensitivity of Cyclodextrin Polypseudorotaxane with Light-Active Rotor Graft. Langmuir, 2009, 25, 3482-3486.	1.6	69
153	A light-driven [1]rotaxane via self-complementary and Suzuki-coupling capping. Chemical Communications, 2007, , 1409.	2.2	87
154	Effective Enhancement of Fluorescence Signals in Rotaxaneâ€Doped Reversible Hydrosol–Gel Systems. Chemistry - A European Journal, 2007, 13, 9216-9222.	1.7	93
155	Hydrogen-bonded assembly and binding affinity of the multi-point acceptor and isophthalic acid. Open Chemistry, 2006, 4, 732-742.	1.0	3