Shane Grealish

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6069350/publications.pdf

Version: 2024-02-01

22 papers 2,811 citations

³⁹⁴²⁸⁶
19
h-index

677027 22 g-index

22 all docs 22 docs citations

times ranked

22

3350 citing authors

#	Article	IF	CITATIONS
1	The future of stem cell therapies for Parkinson disease. Nature Reviews Neuroscience, 2020, 21, 103-115.	4.9	178
2	hESC-Derived Dopaminergic Transplants Integrate into Basal Ganglia Circuitry in a Preclinical Model of Parkinson's Disease. Cell Reports, 2019, 28, 3462-3473.e5.	2.9	65
3	Targetâ€specific forebrain projections and appropriate synaptic inputs of hESCâ€derived dopamine neurons grafted to the midbrain of parkinsonian rats. Journal of Comparative Neurology, 2018, 526, 2133-2146.	0.9	50
4	Synaptic inputs from stroke-injured brain to grafted human stem cell-derived neurons activated by sensory stimuli. Brain, 2017, 140, aww347.	3.7	104
5	IAP-Based Cell Sorting Results in Homogeneous Transplantable Dopaminergic Precursor Cells Derived from Human Pluripotent Stem Cells. Stem Cell Reports, 2017, 9, 1207-1220.	2.3	40
6	Predictive Markers Guide Differentiation to Improve Graft Outcome in Clinical Translation of hESC-Based Therapy for Parkinson's Disease. Cell Stem Cell, 2017, 20, 135-148.	5.2	215
7	Plug and Play Brain: Understanding Integration of Transplanted Neurons for Brain Repair. Cell Stem Cell, 2016, 19, 679-680.	5.2	1
8	Brain repair and reprogramming: the route to clinical translation. Journal of Internal Medicine, 2016, 280, 265-275.	2.7	24
9	GDNF is not required for catecholaminergic neuron survival in vivo. Nature Neuroscience, 2015, 18, 319-322.	7.1	53
10	Monosynaptic Tracing using Modified Rabies Virus Reveals Early and Extensive Circuit Integration of Human Embryonic Stem Cell-Derived Neurons. Stem Cell Reports, 2015, 4, 975-983.	2.3	92
11	InÂVivo Reprogramming of Striatal NG2 Glia into Functional Neurons that Integrate into Local Host Circuitry. Cell Reports, 2015, 12, 474-481.	2.9	173
12	Human ESC-Derived Dopamine Neurons Show Similar Preclinical Efficacy and Potency to Fetal Neurons when Grafted in a Rat Model of Parkinson's Disease. Cell Stem Cell, 2014, 15, 653-665.	5.2	373
13	Highly efficient generation of induced neurons from human fibroblasts that survive transplantation into the adult rat brain. Scientific Reports, 2014, 4, 6330.	1.6	42
14	Region-specific restoration of striatal synaptic plasticity by dopamine grafts in experimental parkinsonism. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4375-84.	3.3	26
15	Generation of induced neurons via direct conversion in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7038-7043.	3.3	376
16	Human foetal brain tissue as quality control when developing stem cells towards cell replacement therapy for neurological diseases. NeuroReport, 2013, 24, 1025-1030.	0.6	8
17	Generation of Regionally Specified Neural Progenitors and Functional Neurons from Human Embryonic Stem Cells under Defined Conditions. Cell Reports, 2012, 1, 703-714.	2.9	595
18	Lineage reprogramming: A shortcut to generating functional neurons from fibroblasts. Cell Cycle, 2011, 10, 3421-3422.	1.3	3

#	Article	IF	CITATIONS
19	Characterisation of behavioural and neurodegenerative changes induced by intranigral 6â€hydroxydopamine lesions in a mouse model of Parkinson's disease. European Journal of Neuroscience, 2010, 31, 2266-2278.	1.2	119
20	The A9 dopamine neuron component in grafts of ventral mesencephalon is an important determinant for recovery of motor function in a rat model of Parkinson's disease. Brain, 2010, 133, 482-495.	3.7	125
21	Reconstruction of the nigrostriatal dopamine pathway in the adult mouse brain. European Journal of Neuroscience, 2009, 30, 625-638.	1.2	116
22	Unilateral axonal or terminal injection of 6-hydroxydopamine causes rapid-onset nigrostriatal degeneration and contralateral motor impairments in the rat. Brain Research Bulletin, 2008, 77, 312-319.	1.4	33