Carmen Ortiz Mellet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6069340/publications.pdf

Version: 2024-02-01

244 papers

9,087 citations

52 h-index 69250

g-index

281 all docs

281 docs citations

times ranked

281

6218 citing authors

#	Article	IF	Citations
1	Cyclodextrin-based gene delivery systems. Chemical Society Reviews, 2011, 40, 1586-1608.	38.1	371
2	Cyclodextrin-based multivalent glycodisplays: covalent and supramolecular conjugates to assess carbohydrate–protein interactions. Chemical Society Reviews, 2013, 42, 4746.	38.1	227
3	Optimizing Saccharide-Directed Molecular Delivery to Biological Receptors:Â Design, Synthesis, and Biological Evaluation of Glycodendrimerâ 'Cyclodextrin Conjugates. Journal of the American Chemical Society, 2004, 126, 10355-10363.	13.7	216
4	Glycosidase Inhibition with Fullerene Iminosugar Balls: A Dramatic Multivalent Effect. Angewandte Chemie - International Edition, 2010, 49, 5753-5756.	13.8	174
5	Multivalency in heterogeneous glycoenvironments: hetero-glycoclusters, -glycopolymers and -glycoassemblies. Chemical Society Reviews, 2013, 42, 4518-4531.	38.1	143
6	Probing Secondary Carbohydrateâ^'Protein Interactions with Highly Dense Cyclodextrin-Centered Heteroglycoclusters:Â The Heterocluster Effect. Journal of the American Chemical Society, 2005, 127, 7970-7971.	13.7	123
7	Glycomimetic-based pharmacological chaperones for lysosomal storage disorders: lessons from Gaucher, G _{M1} -gangliosidosis and Fabry diseases. Chemical Communications, 2016, 52, 5497-5515.	4.1	122
8	Multivalent iminosugars to modulate affinity and selectivity for glycosidases. Organic and Biomolecular Chemistry, 2009, 7, 357-363.	2.8	121
9	Preorganized, Macromolecular, Geneâ€Delivery Systems. Chemistry - A European Journal, 2010, 16, 6728-6742.	3.3	108
10	Pharmacological Chaperones and Coenzyme Q10 Treatment Improves Mutant \hat{l}^2 -Glucocerebrosidase Activity and Mitochondrial Function in Neuronopathic Forms of Gaucher Disease. Scientific Reports, 2015, 5, 10903.	3.3	107
11	Pharmacological chaperone therapy for Gaucher disease: a patent review. Expert Opinion on Therapeutic Patents, 2011, 21, 885-903.	5.0	106
12	Multivalent Cyclooligosaccharides: Versatile Carbohydrate Clusters with Dual Role as Molecular Receptors and Lectin Ligands. Chemistry - A European Journal, 2002, 8, 1982.	3.3	102
13	Polycationic Amphiphilic Cyclodextrins for Gene Delivery: Synthesis and Effect of Structural Modifications on Plasmid DNA Complex Stability, Cytotoxicity, and Gene Expression. Chemistry - A European Journal, 2009, 15, 12871-12888.	3.3	96
14	Mannosyl-coated nanocomplexes from amphiphilic cyclodextrins and pDNA for site-specific gene delivery. Biomaterials, 2011, 32, 7263-7273.	11.4	96
15	The Multivalent Effect in Glycosidase Inhibition: Probing the Influence of Architectural Parameters with Cyclodextrinâ€based Iminosugar Click Clusters. Chemistry - A European Journal, 2011, 17, 13825-13831.	3.3	93
16	Fullereneâ€sp ² â€lminosugar Balls as Multimodal Ligands for Lectins and Glycosidases: A Mechanistic Hypothesis for the Inhibitory Multivalent Effect. Chemistry - A European Journal, 2013, 19, 16791-16803.	3.3	90
17	Isothiocyanates and cyclic thiocarbamates of α, α′-trehalose, sucrose, and cyclomaltooligosaccharides. Carbohydrate Research, 1995, 268, 57-71.	2.3	85
18	Insights in cellular uptake mechanisms of pDNA–polycationic amphiphilic cyclodextrin nanoparticles (CDplexes). Journal of Controlled Release, 2010, 143, 318-325.	9.9	85

#	Article	IF	Citations
19	Urea-, Thiourea-, and Guanidine-Linked Glycooligomers as Phosphate Binders in Water. Journal of Organic Chemistry, 2006, 71, 5136-5143.	3.2	82
20	Chaperone Activity of Bicyclic Nojirimycin Analogues for Gaucher Mutations in Comparison with ⟨i⟩N⟨ i⟩â€(⟨i⟩n⟨ i⟩â€nonyl)Deoxynojirimycin. ChemBioChem, 2009, 10, 2780-2792.	2.6	82
21	Carbohydrate-Based Receptors with Multiple Thiourea Binding Sites. Multipoint Hydrogen Bond Recognition of Dicarboxylates and Monosaccharidesâ€. Journal of Organic Chemistry, 2001, 66, 1366-1372.	3.2	81
22	Topological Effects and Binding Modes Operating with Multivalent Iminosugar-Based Glycoclusters and Mannosidases. Journal of the American Chemical Society, 2013, 135, 18427-18435.	13.7	80
23	Modulation of microglia polarization dynamics during diabetic retinopathy in db / db mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1663-1674.	3.8	80
24	Functional Evaluation of Carbohydrate-Centred Glycoclusters by Enzyme-Linked Lectin Assay: Ligands for Concanavalin A. ChemBioChem, 2004, 5, 771-777.	2.6	79
25	Rational design of cationic cyclooligosaccharides as efficient gene delivery systems. Chemical Communications, 2008, , 2001.	4.1	79
26	β-Cyclodextrin-Based Polycationic Amphiphilic "Click―Clusters: Effect of Structural Modifications in Their DNA Complexing and Delivery Properties. Journal of Organic Chemistry, 2011, 76, 5882-5894.	3.2	78
27	Preorganized macromolecular gene delivery systems: amphiphilic β-cyclodextrin "click clustersâ€; Organic and Biomolecular Chemistry, 2009, 7, 2681.	2.8	77
28	Synthesis and comparative lectin-binding affinity of mannosyl-coated \hat{l}^2 -cyclodextrin-dendrimer constructs. Chemical Communications, 2000, , 1489-1490.	4.1	76
29	Neuronopathic Gaucher's disease: induced pluripotent stem cells for disease modelling and testing chaperone activity of small compounds. Human Molecular Genetics, 2013, 22, 633-645.	2.9	75
30	Iminosugar-based glycopolypeptides: glycosidase inhibition with bioinspired glycoprotein analogue micellar self-assemblies. Chemical Communications, 2014, 50, 3350-3352.	4.1	75
31	Multi-Mannosides Based on a Carbohydrate Scaffold:  Synthesis, Force Field Development, Molecular Dynamics Studies, and Binding Affinities for Lectin Con A. Journal of Organic Chemistry, 2007, 72, 9032-9045.	3.2	73
32	1,2,3-Triazoles and related glycoconjugates as new glycosidase inhibitors. Tetrahedron, 2005, 61, 9118-9128.	1.9	72
33	Probing Carbohydrate-Lectin Recognition in Heterogeneous Environments with Monodisperse Cyclodextrin-Based Glycoclusters. Journal of Organic Chemistry, 2012, 77, 1273-1288.	3.2	72
34	Synthesis of N-, S-, and C-glycoside castanospermine analogues with selective neutral $\hat{l}\pm$ -glucosidase inhibitory activity as antitumour agents. Chemical Communications, 2010, 46, 5328.	4.1	71
35	A Bicyclic 1-Deoxygalactonojirimycin Derivative as a Novel Pharmacological Chaperone for GM1 Gangliosidosis. Molecular Therapy, 2013, 21, 526-532.	8.2	70
36	Carbohydrate supramolecular chemistry: beyond the multivalent effect. Chemical Communications, 2020, 56, 5207-5222.	4.1	70

#	Article	IF	CITATIONS
37	Chemistry and developments of N-thiocarbonyl carbohydrate derivatives: Sugar isothiocyanates, thioamides, thioureas, thiocarbamates, and their conjugates. Advances in Carbohydrate Chemistry and Biochemistry, 2000, , 35-135.	0.9	69
38	Generalized Anomeric Effect in Action:  Synthesis and Evaluation of Stable Reducing Indolizidine Glycomimetics as Glycosidase Inhibitors. Journal of Organic Chemistry, 2000, 65, 136-143.	3.2	65
39	Potent Glycosidase Inhibition with Heterovalent Fullerenes: Unveiling the Binding Modes Triggering Multivalent Inhibition. Chemistry - A European Journal, 2016, 22, 11450-11460.	3.3	65
40	Carbohydrate Microarrays. ChemBioChem, 2002, 3, 819-822.	2.6	64
41	Comparative studies on lectin–carbohydrate interactions in low and high density homo- and heteroglycoclusters. Organic and Biomolecular Chemistry, 2010, 8, 1849.	2.8	62
42	Targeted gene delivery by new folate–polycationic amphiphilic cyclodextrin–DNA nanocomplexes in vitro and in vivo. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 390-397.	4.3	62
43	pHâ€Responsive Pharmacological Chaperones for Rescuing Mutant Glycosidases. Angewandte Chemie - International Edition, 2015, 54, 11696-11700.	13.8	62
44	Chiral 2-thioxotetrahydro-1,3-O,N-heterocycles from carbohydrates. 2. Stereocontrolled synthesis of oxazolidine pseudo-C-nucleosides and bicyclic oxazine-2-thiones. Journal of Organic Chemistry, 1993, 58, 5192-5199.	3.2	61
45	Synthesis and Evaluation of Isourea-Type Glycomimetics Related to the Indolizidine and Trehazolin Glycosidase Inhibitor Families. Journal of Organic Chemistry, 2003, 68, 8890-8901.	3.2	58
46	Tailoring \hat{I}^2 -Cyclodextrin for DNA Complexation and Delivery by Homogeneous Functionalization at the Secondary Face. Organic Letters, 2008, 10, 5143-5146.	4.6	56
47	The Multivalent Effect in Glycosidase Inhibition: Probing the Influence of Valency, Peripheral Ligand Structure, and Topology with Cyclodextrinâ€Based Iminosugar Click Clusters. ChemBioChem, 2013, 14, 2038-2049.	2.6	56
48	Structural Basis of Pharmacological Chaperoning for Human \hat{l}^2 -Galactosidase. Journal of Biological Chemistry, 2014, 289, 14560-14568.	3.4	56
49	Sugar Thioureas as Anion Receptors. Effect of Intramolecular Hydrogen Bonding in the Carboxylate Binding Properties of Symmetric Sugar Thioureas. Organic Letters, 1999, 1, 1217-1220.	4.6	54
50	Tuning glycosidase inhibition through aglycone interactions: pharmacological chaperones for Fabry disease and GM1 gangliosidosis. Chemical Communications, 2012, 48, 6514.	4.1	54
51	Cyclodextrin-Scaffolded Glycoclusters. Chemistry - A European Journal, 1998, 4, 2523-2531.	3.3	53
52	Bicyclic (galacto)nojirimycin analogues as glycosidase inhibitors: Effect of structural modifications in their pharmacological chaperone potential towards \hat{l}^2 -glucocerebrosidase. Organic and Biomolecular Chemistry, 2011, 9, 3698.	2.8	53
53	Multivalency as an action principle in multimodal lectin recognition and glycosidase inhibition: a paradigm shift driven by carbon-based glyconanomaterials. Journal of Materials Chemistry B, 2017, 5, 6428-6436.	5.8	53
54	Synthesis and Evaluation of Calystegine B2Analogues as Glycosidase Inhibitors. Journal of Organic Chemistry, 2001, 66, 7604-7614.	3.2	52

#	Article	IF	Citations
55	Polycationic amphiphilic cyclodextrin-based nanoparticles for therapeutic gene delivery. Nanomedicine, 2011, 6, 1697-1707.	3.3	52
56	Inhibition of type 1 fimbriae-mediated Escherichia coli adhesion and biofilm formation by trimeric cluster thiomannosides conjugated to diamond nanoparticles. Nanoscale, 2015, 7, 2325-2335.	5 . 6	52
57	N-Thiocarbonyl azasugars: a new family of carbohydrate mimics with controlled anomeric configuration. Chemical Communications, 1997, , 1969.	4.1	51
58	sp ² â€Iminosugar <i>O</i> â€; <i>S</i> â€; and <i>N</i> â€Glycosides as Conformational Mimics of αâ€Linked Disaccharides; Implications for Glycosidase Inhibition. Chemistry - A European Journal, 2012, 18, 8527-8539.	3.3	51
59	Molecular Basis of 1-Deoxygalactonojirimycin Arylthiourea Binding to Human α-Galactosidase A: Pharmacological Chaperoning Efficacy on Fabry Disease Mutants. ACS Chemical Biology, 2014, 9, 1460-1469.	3.4	50
60	Cyclodextrin- and calixarene-based polycationic amphiphiles as gene delivery systems: a structure–activity relationship study. Organic and Biomolecular Chemistry, 2015, 13, 1708-1723.	2.8	49
61	Pseudoamide-Type Pyrrolidine and Pyrrolizidine Glycomimetics and Their Inhibitory Activities against Glycosidases. Journal of Organic Chemistry, 2004, 69, 3578-3581.	3.2	48
62	Amphiphilic 1-Deoxynojirimycin Derivatives through Click Strategies for Chemical Chaperoning in N370S Gaucher Cells. Journal of Organic Chemistry, 2011, 76, 7757-7768.	3.2	48
63	A Fluorescent sp ² â€lminosugar With Pharmacological Chaperone Activity for Gaucher Disease: Synthesis and Intracellular Distribution Studies. ChemBioChem, 2010, 11, 2453-2464.	2.6	47
64	Glycoligand-targeted core–shell nanospheres with tunable drug release profiles from calixarene–cyclodextrin heterodimers. Chemical Communications, 2014, 50, 7440-7443.	4.1	47
65	Correlations between changes in intestinal microbiota composition and performance parameters in broiler chickens. Journal of Animal Physiology and Animal Nutrition, 2015, 99, 418-423.	2.2	47
66	Molecular nanoparticle-based gene delivery systems. Journal of Drug Delivery Science and Technology, 2017, 42, 18-37.	3.0	47
67	Glycosidase inhibition by ring-modified castanospermine analogues: tackling enzyme selectivity by inhibitor tailoring. Organic and Biomolecular Chemistry, 2009, 7, 2738.	2.8	46
68	Di- <scp>d</scp> -fructose Dianhydride-Enriched Caramels: Effect on Colon Microbiota, Inflammation, and Tissue Damage in Trinitrobenzenesulfonic Acid-Induced Colitic Rats. Journal of Agricultural and Food Chemistry, 2010, 58, 6476-6484.	5.2	46
69	The Impact of Heteromultivalency in Lectin Recognition and Glycosidase Inhibition: An Integrated Mechanistic Study. Chemistry - A European Journal, 2017, 23, 6295-6304.	3.3	46
70	6â€Aminoâ€6â€deoxyâ€5,6â€diâ€∢i>Nâ€(<i>N</i> ′â€octyliminomethylidene)nojirimycin: Synthesis, Biolo Evaluation, and Crystal Structure in Complex with Acid βâ€Glucosidase. ChemBioChem, 2009, 10, 1480-1485.	gical 2.6	44
71	Targeted delivery of pharmacological chaperones for Gaucher disease to macrophages by a mannosylated cyclodextrin carrier. Organic and Biomolecular Chemistry, 2014, 12, 2289-2301.	2.8	44
72	Dependence of Concanavalin A Binding on Anomeric Configuration, Linkage Type, and Ligand Multiplicity for Thiourea-Bridged Mannopyranosyl–β-Cyclodextrin Conjugates. ChemBioChem, 2001, 2, 777.	2.6	43

#	Article	IF	CITATIONS
73	Castanospermine–trehazolin hybrids: a new family of glycomimetics with tuneable glycosidase inhibitory propertiesElectronic supplementary data (ESI) available: full characterization data for the new compounds 7–9, 11, 14–19. See http://www.rsc.org/suppdata/cc/b2/b200162d/. Chemical Communications, 2002, , 848-849.	4.1	43
74	Scalable Syntheses of Both Enantiomers of DNJNAc and DCJNAc from Glucuronolactone: The Effect of <i>N</i> â€Alkylation on Hexosaminidase Inhibition. Chemistry - A European Journal, 2012, 18, 9341-9359.	3.3	42
75	A mild and efficient procedure to remove acetal and dithioacetal protecting groups in carbohydrate derivatives using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. Carbohydrate Research, 1995, 274, 263-268.	2.3	41
76	One-pot regioselective synthesis of 21,31-O-(o-xylylene)-capped cyclomaltooligosaccharides: tailoring the topology and supramolecular properties of cyclodextrins. Chemical Communications, 2007, , 3270.	4.1	41
77	The Thiocarbonyl Group in Carbohydrate Chemistry. Sulfur Reports, 1996, 19, 61-159.	0.4	39
78	Glyconanocavities: Cyclodextrins and Beyond. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 56, 149-159.	1.6	39
79	Synthesis and evaluation of sulfamide-type indolizidines as glycosidase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2805-2808.	2.2	39
80	New Castanospermine Glycoside Analogues Inhibit Breast Cancer Cell Proliferation and Induce Apoptosis without Affecting Normal Cells. PLoS ONE, 2013, 8, e76411.	2.5	39
81	Host–Guestâ€Mediated DNA Templation of Polycationic Supramolecules for Hierarchical Nanocondensation and the Delivery of Gene Material. Chemistry - A European Journal, 2015, 21, 12093-12104.	3.3	39
82	Synthesis of Calystegine B2, B3, and B4 Analogues: Mapping the Structure-Glycosidase Inhibitory Activity Relationships in the 1-Deoxy-6-oxacalystegine Series. European Journal of Organic Chemistry, 2004, 1803-1819.	2.4	38
83	Di- <scp>d</scp> -fructose Dianhydride-Enriched Products by Acid Ion-Exchange Resin-Promoted Caramelization of <scp>d</scp> -Fructose: Chemical Analyses. Journal of Agricultural and Food Chemistry, 2010, 58, 1777-1787.	5.2	38
84	Influence of the configurational pattern of sp2-iminosugar pseudo N-, S-, O- and C-glycosides on their glycoside inhibitory and antitumor properties. Carbohydrate Research, 2016, 429, 113-122.	2.3	38
85	Development of polycationic amphiphilic cyclodextrin nanoparticles for anticancer drug delivery. Beilstein Journal of Nanotechnology, 2017, 8, 1457-1468.	2.8	38
86	Synthesis of Highâ€Mannose Oligosaccharide Analogues through Click Chemistry: True Functional Mimics of Their Natural Counterparts Against Lectins?. Chemistry - A European Journal, 2015, 21, 1978-1991.	3.3	37
87	Docetaxel-Loaded Nanoparticles Assembled from \hat{l}^2 -Cyclodextrin/Calixarene Giant Surfactants: Physicochemical Properties and Cytotoxic Effect in Prostate Cancer and Glioblastoma Cells. Frontiers in Pharmacology, 2017, 8, 249.	3.5	37
88	Synthesis and Comparative Glycosidase Inhibitory Properties of Reducing Castanospermine Analogues. European Journal of Organic Chemistry, 2005, 2005, 2903-2913.	2.4	36
89	Difructose Dianhydrides (DFAs) and DFA-Enriched Products as Functional Foods. Topics in Current Chemistry, 2010, 294, 49-77.	4.0	36
90	Conformationally-Locked $\langle i \rangle N \langle i \rangle$ -Glycosides with Selective \hat{I}^2 -Glucosidase Inhibitory Activity: Identification of a New Non-Iminosugar-Type Pharmacological Chaperone for Gaucher Disease. Journal of Medicinal Chemistry, 2012, 55, 6857-6865.	6.4	36

#	Article	IF	Citations
91	A Practical Amine-Free Synthesis of Symmetric Ureas and Thioureas by Self-Condensation of Iso(thio)cyanates. Synthesis, 1999, 1999, 1907-1914.	2.3	35
92	(Pseudo)amide-linked oligosaccharide mimetics: molecular recognition and supramolecular properties. Beilstein Journal of Organic Chemistry, 2010, 6, 20.	2.2	35
93	Dynamic Selfâ€Assembly of Polycationic Clusters Based on Cyclodextrins for pHâ€Sensitive DNA Nanocondensation and Delivery by Component Design. Chemistry - A European Journal, 2014, 20, 6622-6627.	3.3	35
94	Generalized Anomeric Effect in gem-Diamines: Stereoselective Synthesis of \hat{l}_{\pm} -N-Linked Disaccharide Mimics. Organic Letters, 2009, 11, 3306-3309.	4.6	34
95	Fluorinated Chaperoneâ^ $^{^{\circ}}$ Î^2-Cyclodextrin Formulations for Î^2-Glucocerebrosidase Activity Enhancement in Neuronopathic Gaucher Disease. Journal of Medicinal Chemistry, 2017, 60, 1829-1842.	6.4	34
96	Aza-Wittig reaction of sugar isothiocyanates and sugar iminophosphoranes: An easy entry to unsymmetrical sugar carbodiimides. Tetrahedron Letters, 1997, 38, 4161-4164.	1.4	33
97	Synthesis of glycosyl(thio)ureido sugars via carbodiimides and their conformational behaviour in water. Carbohydrate Research, 2000, 326, 161-175.	2.3	33
98	Molecular Basis for βâ€Clucosidase Inhibition by Ringâ€Modified Calystegine Analogues. ChemBioChem, 2008, 9, 2612-2618.	2.6	33
99	Chemical and Enzymatic Approaches to Carbohydrate-Derived Spiroketals: Di-D-Fructose Dianhydrides (DFAs). Molecules, 2008, 13, 1640-1670.	3.8	33
100	Polycationic amphiphilic cyclodextrins as gene vectors: effect of the macrocyclic ring size on the DNA complexing and delivery properties. Organic and Biomolecular Chemistry, 2012, 10, 5570.	2.8	33
101	Inhibitor versus chaperone behaviour of d-fagomine, DAB and LAB sp2-iminosugar conjugates against glycosidases: A structure–activity relationship study in Gaucher fibroblasts. European Journal of Medicinal Chemistry, 2016, 121, 880-891.	5.5	33
102	Giant Glycosidase Inhibitors: First―and Secondâ€Generation Fullerodendrimers with a Dense Iminosugar Shell. Chemistry - A European Journal, 2018, 24, 2483-2492.	3.3	33
103	Building Blocks for Glycopeptide Synthesis. Disaccharide Glycosyl Isothiocyanates. Journal of Carbohydrate Chemistry, 1993, 12, 487-505.	1.1	32
104	Enantiopure 2-Thioxotetrahydro-1,3-O,N-heterocycles from Carbohydrates. 3. Enantiopure C-4 Chiral Oxazine- and Oxazolidine-2-thiones from 3-Deoxy-3-isothiocyanato Sugars. Journal of Organic Chemistry, 1994, 59, 5565-5572.	3.2	32
105	Synthesis, conformational flexibility and preliminary complexation behaviour of α,α′-trehalose-based macrocycles containing thiourea spacers. Journal of the Chemical Society Chemical Communications, 1995, .	2.0	32
106	Synthesis and anomeric stability of (1â†'6)-thiourea-linked pseudooligosaccharides. Carbohydrate Research, 1999, 320, 37-48.	2.3	32
107	Synthesis, Structure, and Inclusion Capabilities of Trehalose-Based Cyclodextrin Analogues (Cyclotrehalans). Journal of Organic Chemistry, 2008, 73, 2967-2979.	3.2	32
108	Amphiphilic Oligoethyleneimineâ^'β-Cyclodextrin "Click―Clusters for Enhanced DNA Delivery. Journal of Organic Chemistry, 2013, 78, 8143-8148.	3.2	32

#	Article	IF	CITATIONS
109	Tn Antigen Mimics Based on <i>sp</i> <csup>2-Iminosugars with Affinity for an anti-MUC1 Antibody. Organic Letters, 2016, 18, 3890-3893.</csup>	4.6	32
110	Cyclodextrin-mediated crystallization of acid \hat{l}^2 -glucosidase in complex with amphiphilic bicyclic nojirimycin analogues. Organic and Biomolecular Chemistry, 2011, 9, 4160.	2.8	31
111	o-Xylylene Protecting Group in Carbohydrate Chemistry: Application to the Regioselective Protection of a Single vic-Diol Segment in Cyclodextrins. Journal of Organic Chemistry, 2013, 78, 1390-1403.	3.2	31
112	One-step synthesis of non-anomeric sugar isothiocyanates from sugar azides. Carbohydrate Research, 2002, 337, 2329-2334.	2.3	30
113	Intramolecular Benzyl Protection Delivery:  A Practical Synthesis of DMDP and DGDP fromd-Fructose. Organic Letters, 2006, 8, 297-299.	4.6	30
114	Bicyclic Derivatives of <scp>L</scp> â€kdonojirimycin as Pharmacological Chaperones for Neuronopathic Forms of Gaucher Disease. ChemBioChem, 2013, 14, 943-949.	2.6	30
115	Cholesterol-Targeted Anticancer and Apoptotic Effects of Anionic and Polycationic Amphiphilic Cyclodextrin Nanoparticles. Journal of Pharmaceutical Sciences, 2016, 105, 3172-3182.	3.3	30
116	Probing the Inhibitor versus Chaperone Properties of sp2-Iminosugars towards Human β-Glucocerebrosidase: A Picomolar Chaperone for Gaucher Disease. Molecules, 2018, 23, 927.	3.8	30
117	Synthesis of (1 → 6)-carbodiimide-tethered pseudooligosaccharides via aza-Wittig reaction. Carbohydrate Research, 1997, 304, 261-270.	2.3	29
118	Study of the Conformational and Self-Aggregation Properties of 2I,3I-O-(o-Xylylene)-per-O-Me- \hat{l} ±- and $-\hat{l}$ 2-cyclodextrins by Fluorescence and Molecular Modeling. Journal of Physical Chemistry B, 2008, 112, 13717-13729.	2.6	29
119	Cyclotrehalins: Cyclooligosaccharide Receptors Featuring a Hydrophobic Cavity. Angewandte Chemie - International Edition, 2002, 41, 3674-3676.	13.8	28
120	Synthesis and Biological Evaluation of Guanidine-Type Iminosugars. Journal of Organic Chemistry, 2008, 73, 1995-1998.	3.2	28
121	Synthesis of Thiohydantoin-Castanospermine Glycomimetics as Glycosidase Inhibitors. Journal of Organic Chemistry, 2009, 74, 3595-3598.	3.2	28
122	Symmetry Complementarityâ \in Guided Design of Anthrax Toxin Inhibitors Based on \hat{l}^2 â \in Cyclodextrin: Synthesis and Relative Activities of Faceâ \in Selective Functionalized Polycationic Clusters. ChemMedChem, 2011, 6, 181-192.	3.2	27
123	Antileishmanial activity of sp ² -iminosugar derivatives. RSC Advances, 2015, 5, 21812-21822.	3.6	27
124	Unprecedented inhibition of glycosidase-catalyzed substrate hydrolysis by nanodiamond-grafted O-glycosides. RSC Advances, 2015, 5, 100568-100578.	3.6	27
125	Construction of giant glycosidase inhibitors from iminosugar-substituted fullerene macromonomers. Journal of Materials Chemistry B, 2017, 5, 6546-6556.	5.8	26
126	Synthesis of Calystegine B2 Analogs by Tandem Tautomerization-Intramolecular Glycosylation of Thioureidosugars. Synlett, 1998, 1998, 316-318.	1.8	25

#	Article	IF	Citations
127	Pharmacological Chaperones for the Treatment of $\hat{l}\pm$ -Mannosidosis. Journal of Medicinal Chemistry, 2019, 62, 5832-5843.	6.4	25
128	Synthesis, conformational analysis and $\langle i \rangle$ in $vivo \langle i \rangle$ assays of an anti-cancer vaccine that features an unnatural antigen based on an sp $\langle sup \rangle$ -iminosugar fragment. Chemical Science, 2020, 11, 3996-4006.	7.4	24
129	Chiral 2-thioxotetrahydro-1,3-O,N-heterocycles from carbohydrates. Tetrahedron Letters, 1992, 33, 3931-3934.	1.4	23
130	Thioureido- \hat{l}^2 -cyclodextrins as molecular carriers. Chemical Communications, 1996, , 2741-2742.	4.1	23
131	Carbohydrate-Derived Spiroketals. Stereoselective Synthesis of Di-d-fructose Dianhydrides by Boron Trifluoride Promoted Glycosylationâ^'Spiroketalization of Acetal Precursorsâ€. Organic Letters, 2001, 3, 549-552.	4.6	23
132	The o-xylylene protecting group as an element of conformational control of remote stereochemistry in the synthesis of spiroketals. Chemical Communications, 2006, , 2610-2612.	4.1	23
133	Trehalose- and Glucose-Derived Glycoamphiphiles: Small-Molecule and Nanoparticle Toll-Like Receptor 4 (TLR4) Modulators. Journal of Medicinal Chemistry, 2014, 57, 9105-9123.	6.4	23
134	Efficient stereoselective synthesis of 2-acetamido-1,2-dideoxyallonojirimycin (DAJNAc) and sp2-iminosugar conjugates: Novel hexosaminidase inhibitors with discrimination capabilities between the mature and precursor forms of the enzyme. European Journal of Medicinal Chemistry, 2016, 121, 926-938.	5.5	23
135	Synthesis, self-assembly and anticancer drug encapsulation and delivery properties of cyclodextrin-based giant amphiphiles. Carbohydrate Polymers, 2021, 252, 117135.	10.2	23
136	Synthesis of sulfur-linked analogues of nigerose, laminarabiose, laminaratriose, gentiobiose, gentiotriose, and laminaran trisaccharide Y. Carbohydrate Research, 1996, 281, 99-118.	2.3	22
137	Synthesis of \hat{l}_{\pm} - and \hat{l}^2 -Glycosyl Isothiocyanates via Oxazoline Intermediates. Journal of Organic Chemistry, 2007, 72, 4547-4550.	3.2	22
138	Fluorescent-tagged sp2-iminosugars with potent \hat{l}^2 -glucosidase inhibitory activity. Bioorganic and Medicinal Chemistry, 2010, 18, 7439-7445.	3.0	22
139	Probing the Nature of the Cluster Effect Observed with Synthetic Multivalent Galactosides and Peanut Agglutinin Lectin. Chemistry - A European Journal, 2013, 19, 729-738.	3.3	22
140	Effects of inulin and di-d-fructose dianhydride-enriched caramels on intestinal microbiota composition and performance of broiler chickens. Animal, 2013, 7, 1779-1788.	3.3	22
141	Plasmidâ€Templated Control of DNA–Cyclodextrin Nanoparticle Morphology through Molecular Vector Design for Effective Gene Delivery. Chemistry - A European Journal, 2018, 24, 3825-3835.	3.3	22
142	Synthesis and biological evaluation of 6-oxa-nor-tropane glycomimetics as glycosidase inhibitors. Tetrahedron, 2007, 63, 7879-7884.	1.9	21
143	Effects of feed additives on ileal mucosa–associated microbiota composition of broiler chickens1. Journal of Animal Science, 2015, 93, 3410-3420.	0.5	21
144	Size-Tunable Trehalose-Based Nanocavities: Synthesis, Structure, and Inclusion Properties of Large-Ring Cyclotrehalans. Journal of Organic Chemistry, 2009, 74, 2997-3008.	3.2	20

#	Article	IF	CITATIONS
145	Synthesis of Multibranched Australine Derivatives from Reducing Castanospermine Analogues through the Amadori Rearrangement of $\langle i \rangle$ gem $\langle i \rangle$ -Diamine Intermediates: Selective Inhibitors of \hat{l}^2 -Glucosidase. Journal of Organic Chemistry, 2014, 79, 11722-11728.	3.2	20
146	Trehalose-based Janus cyclooligosaccharides: the "Click―synthesis and DNA-directed assembly into pH-sensitive transfectious nanoparticles. Chemical Communications, 2016, 52, 10117-10120.	4.1	20
147	Understanding multivalent effects in glycosidase inhibition using C-glycoside click clusters as molecular probes. New Journal of Chemistry, 2016, 40, 7421-7430.	2.8	20
148	Influence of intramolecular hydrogen-bonding on the conformational properties of sugar thioureas. Tetrahedron: Asymmetry, 1994, 5, 2325-2334.	1.8	19
149	Carbohydrate-derived spiroketals: stereoselective synthesis of di-d-fructose dianhydrides. Tetrahedron, 2004, 60, 5899-5906.	1.9	19
150	Thermodynamics of the Dimer Formation of 2I,3I-O-(o-Xylylene)-per-O-Me-Î ³ -cyclodextrin: Fluorescence, Molecular Mechanics and Molecular Dynamics. Journal of Fluorescence, 2009, 19, 975-988.	2.5	19
151	Stereoselective synthesis of 2-acetamido-1,2-dideoxynojirimycin (DNJNAc) and ureido-DNJNAc derivatives as new hexosaminidase inhibitors. Organic and Biomolecular Chemistry, 2015, 13, 6500-6510.	2.8	19
152	Cyclodextrin-based facial amphiphiles: assessing the impact of the hydrophilic–lipophilic balance in the self-assembly, DNA complexation and gene delivery capabilities. Organic and Biomolecular Chemistry, 2016, 14, 10037-10049.	2.8	19
153	The sp 2 -iminosugar glycolipid 1-dodecylsulfonyl-5 N ,6 O -oxomethylidenenojirimycin (DSO 2 -ONJ) as selective anti-inflammatory agent by modulation of hemeoxygenase-1 in Bv.2 microglial cells and retinal explants. Food and Chemical Toxicology, 2018, 111, 454-466.	3.6	19
154	Cyclodextrin-Based Functional Glyconanomaterials. Nanomaterials, 2020, 10, 2517.	4.1	19
155	Revealing cooperative binding of polycationic cyclodextrins with DNA oligomers by capillary electrophoresis coupled to mass spectrometry. Analytica Chimica Acta, 2018, 1002, 70-81.	5.4	18
156	Synthesis of polyfluoroalkyl sp2-iminosugar glycolipids and evaluation of their immunomodulatory properties towards anti-tumor, anti-leishmanial and anti-inflammatory therapies. European Journal of Medicinal Chemistry, 2019, 182, 111604.	5.5	18
157	Conformational energetics of sugar thioureas and synthesis of glycosyl thioureido sugars. Tetrahedron, 1996, 52, 12947-12970.	1.9	17
158	Polyhydroxylated N-(thio)carbamoyl piperidines: nojirimycin-type glycomimetics with controlled anomeric configuration. Tetrahedron: Asymmetry, 1999, 10, 4271-4275.	1.8	17
159	Monodisperse Nanoparticles from Self-Assembling Amphiphilic Cyclodextrins: Modulable Tools for the Encapsulation and Controlled Release of Pharmaceuticals. Medicinal Chemistry, 2012, 8, 524-532.	1.5	17
160	Synthesis of glycosylaminothiazoles. Carbohydrate Research, 1986, 153, 318-324.	2.3	16
161	Nitrogen versus sulfur acylation in sugar thioureas: regioselectivity and conformational consequences. Tetrahedron: Asymmetry, 2000, 11, 1331-1341.	1.8	16
162	Spacer-Mediated Synthesis of Contra-Thermodynamic Spiroacetals:Â Stereoselective Synthesis of C2-Symmetric Difructose Dianhydrides. Journal of Organic Chemistry, 2006, 71, 2257-2266.	3.2	16

#	Article	IF	Citations
163	Regioselective synthesis and biological evaluation of spiro-sulfamidate glycosides from exo-glycals. Tetrahedron: Asymmetry, 2009, 20, 1817-1823.	1.8	16
164	Stereoselective Synthesis of 2-Acetamido-1,2-dideoxyallonojirimycin (DAJNAc), a New Potent Hexosaminidase Inhibitor. Organic Letters, 2013, 15, 3638-3641.	4.6	16
165	Cyclodextrin-scaffolded glycotransporters for gene delivery. Pure and Applied Chemistry, 2013, 85, 1825-1845.	1.9	16
166	Biophysics and protein corona analysis of Janus cyclodextrin-DNA nanocomplexes. Efficient cellular transfection on cancer cells. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1737-1749.	2.4	16
167	Tuning the Topological Landscape of DNA–Cyclodextrin Nanocomplexes by Molecular Design. Chemistry - A European Journal, 2020, 26, 15259-15269.	3.3	16
168	Rigid Spacer-Mediated Synthesis of Bis-Spiroketal Ring Systems:  Stereoselective Synthesis of Nonsymmetrical Spiro Disaccharides. Organic Letters, 2005, 7, 729-731.	4.6	15
169	Conformationally-locked N-glycosides: Exploiting long-range non-glycone interactions in the design of pharmacological chaperones for Gaucher disease. European Journal of Medicinal Chemistry, 2015, 90, 258-266.	5.5	15
170	Impact of Nonthermal Atmospheric Plasma on the Structure of Cellulose: Access to Soluble Branched Glucans. Chemistry - A European Journal, 2016, 22, 16522-16530.	3.3	15
171	sp2-Iminosugar glycolipids as inhibitors of lipopolysaccharide-mediated human dendritic cell activation inAvitro and of acute inflammation in mice inÂvivo. European Journal of Medicinal Chemistry, 2019, 169, 111-120.	5.5	15
172	Bicyclic Picomolar OGA Inhibitors Enable Chemoproteomic Mapping of Its Endogenous Post-translational Modifications. Journal of the American Chemical Society, 2022, 144, 832-844.	13.7	15
173	Sulfur Atom Participation in Thiooligosaccharide Chemistry: Synthesis of 1â€~-Thiotrehalulose and 1â€~-epi-Thiotrehalulose and Comparative Reactivity with the O-Linked Disaccharide Analogue, Trehaluloseâ€. Journal of Organic Chemistry, 1998, 63, 3572-3580.	3.2	14
174	Synthesis of substituted exo-glucals via a modified Julia olefination and identification as selective \hat{l}^2 -glucosidase inhibitors. Organic and Biomolecular Chemistry, 2014, 12, 690-699.	2.8	14
175	Amplified Detection of Breast Cancer Autoantibodies Using MUC1-Based Tn Antigen Mimics. Journal of Medicinal Chemistry, 2020, 63, 8524-8533.	6.4	14
176	O-Acetyl Protection of 6-Aminoaldopyranosides and 1-Aminoalditols. Journal of Carbohydrate Chemistry, 1995, 14, 1133-1152.	1.1	13
177	Stereocontrolled synthesis of sulfur-linked analogues of the branched tetrasaccharide repeating-unit of the immunostimulant polysaccharide schizophyllan and of its \hat{l}^2 -(1 \hat{a} †' 3)-branched, \hat{l}^2 -(1 \hat{a} †') Tj E	ET Q q1 1	0.7 8 4314 rg
178	Promoting helicity in carbohydrate-containing foldamers through long-range hydrogen bonds. Chemical Communications, 2007, , 831-833.	4.1	13
179	Efficient Use of Ellman Safety-Catch Linker for Solid-Phase Assisted Synthesis of Multivalent Glycoconjugates. ACS Combinatorial Science, 2007, 9, 339-342.	3.3	13
180	Conformationally-locked C-glycosides: tuning aglycone interactions for optimal chaperone behaviour in Gaucher fibroblasts. Organic and Biomolecular Chemistry, 2016, 14, 1473-1484.	2.8	13

#	Article	IF	Citations
181	Molecular determinants for cyclo-oligosaccharide-based nanoparticle-mediated effective siRNA transfection. Nanomedicine, 2017, 12, 1607-1621.	3.3	13
182	Anti-Inflammatory (M2) Response Is Induced by a sp2-Iminosugar Glycolipid Sulfoxide in Diabetic Retinopathy. Frontiers in Immunology, 2021, 12, 632132.	4.8	13
183	Synthesis and conformational properties of sugar amides and thioamides. Tetrahedron: Asymmetry, 1994, 5, 2313-2324.	1.8	12
184	1-Doexy-1-isothiocyanato-d-fructose as intermediate in syntheses of 1,3-O(S),N-heterocycles. Carbohydrate Research, 1994, 257, 127-135.	2.3	12
185	Carbohydrate-Derived Spiroketals:  Stereoselective Synthesis of Di-d-fructose Dianhydrides via Intramolecular Aglycon Delivery. Organic Letters, 2003, 5, 873-876.	4.6	12
186	Cyclodextrin-scaffolded amphiphilic aminoglucoside clusters: self-assembling and gene delivery capabilities. New Journal of Chemistry, 2014, 38, 5215-5225.	2.8	12
187	Cell uptake mechanisms of glycosylated cationic pDNA–cyclodextrin nanoparticles. RSC Advances, 2015, 5, 29135-29144.	3.6	12
188	Carbon Dioxide as a Traceless Caramelization Promotor: Preparation of Prebiotic Difructose Dianhydrides (DFAs)-Enriched Caramels from <scp>d</scp> -Fructose. Journal of Agricultural and Food Chemistry, 2017, 65, 6093-6099.	5.2	12
189	Catalystâ€Free Synthesis of Alkylpolyglycosides Induced by Highâ€Frequency Ultrasound. ChemSusChem, 2018, 11, 2673-2676.	6.8	12
190	Multiply–linked cyclodextrin–aromatic hybrids: Caps, hinges and clips. Journal of Carbohydrate Chemistry, 2019, 38, 470-493.	1.1	12
191	Dynamic Control of the Self-Assembling Properties of Cyclodextrins by the Interplay of Aromatic and Host-Guest Interactions. Frontiers in Chemistry, 2019, 7, 72.	3.6	12
192	A general entry to linear, dendritic and branched thiourea-linked glycooligomers as new motifs for phosphate ester recognition in water. Chemical Communications, 2004, , 92-93.	4.1	11
193	Synthesis and glycosidase inhibitory activity of isourea-type bicyclic sp2-iminosugars related to galactonojirimycin and allonojirimycin. Tetrahedron, 2012, 68, 681-689.	1.9	11
194	<i>N</i> â€Thiocarbonyl Iminosugars: Synthesis and Evaluation of Castanospermine Analogues Bearing Oxazoleâ€2(3 <i>H</i>)â€thione Moieties. European Journal of Organic Chemistry, 2013, 2013, 7941-7951.	2.4	11
195	A novel potential nanophototherapeutic based on the assembly of an amphiphilic cationic \hat{l}^2 -cyclodextrin and an anionic porphyrin. Journal of Porphyrins and Phthalocyanines, 2017, 21, 398-405.	0.8	11
196	Syntheses of partially protected d-galactopyranosylthioureas: New d-galactopyranosylimidazoline-2-thiones and d-galactopyranosylaminothiazoles. Carbohydrate Research, 1989, 193, 314-321.	2.3	10
197	Synthesis of N-Hetarylthiourea Derivatives of Carbohydrates. Journal of Carbohydrate Chemistry, 1990, 9, 837-851.	1.1	10
198	Synthesis of 6,7-dideoxy-7-isothiocyanatoheptoses: stable fully unprotected monosaccharide isothiocyanates. Carbohydrate Research, 1999, 323, 218-225.	2.3	10

#	Article	IF	CITATIONS
199	Trehalose-based Siamese twin amphiphiles with tunable self-assembling, DNA nanocomplexing and gene delivery properties. Chemical Communications, 2019, 55, 8227-8230.	4.1	10
200	The Synthesis and Structure of Linear and Dendritic Thiourea-Linked Glycooligomers. European Journal of Organic Chemistry, 2006, 2006, 183-196.	2.4	9
201	Stereoselective synthesis of nonsymmetrical difructose dianhydrides from xylylene-tethered d-fructose precursors. Tetrahedron, 2008, 64, 2792-2800.	1.9	9
202	Influence of the Macroring Size on the Self-Association Thermodynamics of Cyclodextrins with a Double-Linked Naphthalene at the Secondary Face. Journal of Physical Chemistry B, 2013, 117, 5472-5485.	2.6	9
203	Xylylene Clips for the Topology-Guided Control of the Inclusion and Self-Assembling Properties of Cyclodextrins. Journal of Organic Chemistry, 2018, 83, 5588-5597.	3.2	9
204	Thiol-ene "Click" Synthesis and Pharmacological Evaluation of C-Glycoside sp2-Iminosugar Glycolipids. Molecules, 2019, 24, 2882.	3.8	9
205	Novel Therapies for Orphan Diseases. ACS Medicinal Chemistry Letters, 2019, 10, 1020-1023.	2.8	9
206	Multivalent glycoligands with lectin/enzyme dual specificity: self-deliverable glycosidase regulators. Chemical Communications, 2019, 55, 12845-12848.	4.1	9
207	Click Synthesis of Size- and Shape-Tunable Star Polymers with Functional Macrocyclic Cores for Synergistic DNA Complexation and Delivery. Biomacromolecules, 2020, 21, 5173-5188.	5.4	9
208	Cyclodextrin-Based Nanostructure Efficiently Delivers siRNA to Glioblastoma Cells Preferentially via Macropinocytosis. International Journal of Molecular Sciences, 2020, 21, 9306.	4.1	9
209	Stereoselective Synthesis of Iminosugar 2-Deoxy(thio)glycosides from Bicyclic Iminoglycal Carbamates Promoted by Cerium(IV) Ammonium Nitrate and Cooperative Brønsted Acid-Type Organocatalysis. Journal of Organic Chemistry, 2020, 85, 5038-5047.	3.2	9
210	Syntheses of \hat{I}^2 -iodourea derivatives of carbohydrates and glycosylamino-oxazolines. Carbohydrate Research, 1992, 216, 21-32.	2.3	8
211	Tautomeric rearrangement of 3-deoxy-3-thioureidoaldoses: a novel synthetic route to carbohydrate mimics having a cyclic thiourea structure. Chemical Communications, 1996, , 2077-2078.	4.1	8
212	Synthesis and stereoelectronic properties of sugar-shaped polyhydroxylated hexahydropyrimidine-2-thiones. Tetrahedron, 1998, 54, 14123-14144.	1.9	8
213	Glycotransporters for gene delivery. Carbohydrate Chemistry, 2012, , 338-375.	0.3	8
214	Improving inclusion capabilities of permethylated cyclodextrins by appending a cap-like aromatic moiety. Tetrahedron, 2012, 68, 2961-2972.	1.9	8
215	Influence of intramolecular hydrogen-bonding on the conformation of 3-deoxy-3-thioureido sugars. Carbohydrate Research, 1996, 286, 55-65.	2.3	7
216	Trehalose-based cyclodextrin analogs: cyclotrehalans (CTs). Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 147-150.	1.6	7

#	Article	IF	Citations
217	Fluorinated hydroxypiperidines as selective \hat{l}^2 -glucosidase inhibitors. Organic and Biomolecular Chemistry, 2015, 13, 5983-5996.	2.8	7
218	Competitive processes of a chromophore modified \hat{l}_{\pm} -cyclodextrin in the presence of a fluorescence polarity sensitive probe. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 256, 42-51.	3.9	6
219	Harmonized tuning of nucleic acid and lectin binding properties with multivalent cyclodextrins for macrophage-selective gene delivery. RSC Advances, 2015, 5, 76464-76471.	3.6	6
220	Deciphering of polycationic carbohydrate based non-viral gene delivery agents by ESI-LTQ-Orbitrap using CID/HCD pairwise tandem mass spectrometry. RSC Advances, 2016, 6, 78803-78817.	3.6	6
221	Toward a suitable structural analysis of gene delivery carrier based on polycationic carbohydrates by electron transfer dissociation tandem mass spectrometry. Analytica Chimica Acta, 2016, 948, 62-72.	5.4	6
222	Cyclodextrins for Pharmaceutical and Biomedical Applications. Monographs in Supramolecular Chemistry, 2013, , 94-139.	0.2	6
223	Cyclotrehalins: Cyclooligosaccharide Receptors Featuring a Hydrophobic Cavity. Angewandte Chemie, 2002, 114, 3826-3828.	2.0	5
224	Synthesis of Sugar Oxazolines by Intramolecular Ritter-Like Reaction ofd-Fructose Precursors. Synlett, 2004, 2004, 2230-2232.	1.8	5
225	A Di-D-Fructose Dianhydride-Enriched Caramel Modulates Pig Fecal Microbiota Composition. Advances in Microbiology, 2014, 04, 242-251.	0.6	5
226	sp ² -Iminosugars targeting human lysosomal \hat{l}^2 -hexosaminidase as pharmacological chaperone candidates for late-onset Tay-Sachs disease. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 1364-1374.	5.2	5
227	Stereoselective Synthesis of Difructose Dianhydrides by Use of the Xylylene Group as Stereodirecting Element in Spiroketalisation Reactions. European Journal of Organic Chemistry, 2011, 2011, 517-528.	2.4	4
228	A versatile stereocontrolled synthesis of 2-deoxyiminosugar <i>C</i> -glycosides and their evaluation as glycosidase inhibitors. Organic and Biomolecular Chemistry, 2021, 19, 1083-1099.	2.8	4
229	Trifaceted Mickey Mouse Amphiphiles for Programmable Selfâ€Assembly, DNA Complexation and Organâ€Selective Gene Delivery. Chemistry - A European Journal, 2021, 27, 9429-9438.	3.3	4
230	Synthesis of sp2-Iminosugar Selenoglycolipids as Multitarget Drug Candidates with Antiproliferative, Leishmanicidal and Anti-Inflammatory Properties. Molecules, 2021, 26, 7501.	3.8	4
231	Enhanced Gene Delivery Triggered by Dual pH/Redox Responsive Hostâ€Guest Dimerization of Cyclooligosaccharide Star Polycations. Macromolecular Rapid Communications, 2022, 43, e2200145.	3.9	4
232	Syntheses and spectral properties of βâ€iodoureas and 2â€aminoâ€4,4â€diphenylâ€2â€oxazolines. Journal of Heterocyclic Chemistry, 1991, 28, 777-780.	2.6	3
233	Synthesis of Thiourea-Linked Glycooligomers that Mimic the Branching Patterns of Natural Oligosaccharides. Synthesis, 2007, 2007, 2545-2558.	2.3	2
234	Correction to "Topological Effects and Binding Modes Operating with Multivalent Iminosugar-Based Glycoclusters and Mannosidases― Journal of the American Chemical Society, 2014, 136, 6773-6773.	13.7	2

#	Article	IF	CITATIONS
235	Stereoselective Synthesis of Nojirimycin α- <i>C</i> -Glycosides from a Bicyclic Acyliminium Intermediate: A Convenient Entry to <i>N</i> -, <i>C</i> -Biantennary Glycomimetics. ACS Omega, 0, , .	3.5	2
236	Synthesis of (1S,2S,3R,8S,8aR)-1,2,3,8-Tetrahydroxy-6-oxa-5-thioxoindolizidine: A Stable Reducing Swainsonine Analog with Controlled Anomeric Configuration. Synlett, 2003, 2003, 0341-0344.	1.8	1
237	sp2-lminosugars as chemical mimics for glycodrug design. , 2020, , 197-224.		1
238	Rational design of cell active C2-modified DGJ analogues for the inhibition of human \hat{l}_{\pm} -galactosidase A (GALA). Organic and Biomolecular Chemistry, 2021, 19, 8057-8062.	2.8	1
239	Chemical and Enzymatic Approaches to Carbohydrate-Derived Spiroketals: Di-D-Fructose Dianhydrides (DFAs). Molecules, 2008, 13, 1640-1670.	3.8	1
240	Spacer-Mediated Synthesis of Bis-spiroketal Disaccharides: Nonsymmetrical Furanose-Pyranose Difructose Dianhydrides. Synlett, 2007, 2007, 2738-2742.	1.8	0
241	Neuronopathic Gaucher's disease: induced pluripotent stem cells for disease modelling and testing chaperone activity of small compounds. Human Molecular Genetics, 2014, 23, 281-281.	2.9	O
242	Frontispiece: The Impact of Heteromultivalency in Lectin Recognition and Glycosidase Inhibition: An Integrated Mechanistic Study. Chemistry - A European Journal, 2017, 23, .	3.3	0
243	Screening sp-iminosugarâ€N-glycosides as pharmacological chaperone candidates forâ€Î±â€mannosidosis: The effect of aglycone nature and valency. Molecular Genetics and Metabolism, 2019, 126, S58.	1.1	О
244	Tailoring the inhibitory versus chaperoning behavior of amphiphilic sp-iminosugar glycomimetics targetingâ€Î²-glucocerebrosidase: From micromolar to picomolar chaperones for Gaucher disease. Molecular Genetics and Metabolism, 2019, 126, S58.	1.1	0