
T S Sampath Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/606922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Progress in Surface Modification of Mg Alloys for Biodegradable Orthopedic Applications. Frontiers in Materials, 2022, 9, .	1.2	22
2	Eggshell Waste: A Gold Mine for Sustainable Bioceramics. Journal of the Indian Institute of Science, 2022, 102, 599-620.	0.9	6
3	Fabrication and evaluation of multifunctional agarose based electrospun scaffolds for cutaneous wound repairs. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 653-664.	1.3	5
4	Corrosion, stress corrosion cracking and corrosion fatigue behavior of magnesium alloy bioimplants. Corrosion Reviews, 2022, 40, 289-333.	1.0	12
5	Process optimization for the rapid conversion of calcite into hydroxyapatite microspheres for chromatographic applications. Scientific Reports, 2022, 12, .	1.6	5
6	Tailoring the Properties of Biodegradable Mg–Ca Alloy by Groove Pressing Technique. Transactions of the Indian Institute of Metals, 2021, 74, 791-798.	0.7	3
7	Odontogenic differentiation of inflamed dental pulp stem cells (IDPSCs) on polycaprolactone (PCL) nanofiber blended with hydroxyapatite. Dental Materials Journal, 2021, 40, 312-321.	0.8	7
8	Nanocarrier-based drug delivery systems for bone cancer therapy: a review. Biomedical Materials (Bristol), 2021, 16, 044107.	1.7	15
9	Eggshell derived hydroxyapatite microspheres for chromatographic applications by a novel dissolution - precipitation method. Ceramics International, 2021, 47, 18575-18583.	2.3	16
10	Dimethylaminoethyl modified curdlan nanoparticles for targeted siRNA delivery to macrophages. Materials Science and Engineering C, 2020, 108, 110379.	3.8	9
11	Hydroxyapatite-dextran methacrylate core/shell hybrid nanocarriers for combinatorial drug therapy. Journal of Materials Research, 2020, 35, 2451-2465.	1.2	10
12	Combinational delivery of anticancer drugs for osteosarcoma treatment using electrosprayed core shell nanocarriers. Journal of Materials Science: Materials in Medicine, 2020, 31, 44.	1.7	17
13	Evaluation of effect of two different functionalized nanoparticle photodynamic therapy on nanohardness of root dentin–An in vitro study. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101856.	1.3	3
14	Modulation of biological properties by grain refinement and surface modification on titanium surfaces for implant-related infections. Journal of Materials Science, 2019, 54, 13265-13282.	1.7	15
15	Eggshell derived brushite bone cement with minimal inflammatory response and higher osteoconductive potential. Journal of Materials Science: Materials in Medicine, 2019, 30, 113.	1.7	20
16	Theranostic Calcium Phosphate Nanoparticles With Potential for Multimodal Imaging and Drug Delivery. Frontiers in Bioengineering and Biotechnology, 2019, 7, 126.	2.0	23
17	Drug loaded electrospun polymer/ceramic composite nanofibrous coatings on titanium for implant related infections. Ceramics International, 2019, 45, 18710-18720.	2.3	36
18	Curcumin Releasing Eggshell Derived Carbonated Apatite Nanocarriers for Combined Anti-Cancer, Anti-Inflammatory and Bone Regenerative Therapy. Journal of Nanoscience and Nanotechnology, 2019, 19, 6872-6880.	0.9	26

#	Article	IF	CITATIONS
19	Dual delivery of tuberculosis drugs via cyclodextrin conjugated curdlan nanoparticles to infected macrophages. Carbohydrate Polymers, 2019, 218, 53-62.	5.1	60
20	Effect of triple antibiotic loaded apatitic nanocarriers on Enterococcus faecalis biofilm – An In vitro study. Journal of Drug Delivery Science and Technology, 2019, 51, 499-505.	1.4	7
21	Hydroxyapatite-poly(vinyl alcohol) core-shell nanoparticles for dual delivery of methotrexate and gemcitabine for bone cancer treatment. Journal of Drug Delivery Science and Technology, 2019, 51, 629-638.	1.4	34
22	Electrospun PVA/AGAROSE Blends as Prospective Wound Healing Patches for Foot Ulcers. , 2019, , .		1
23	Bioactivity enhancement by Sr doped Zn-Ca-P coatings on biomedical magnesium alloy. Journal of Magnesium and Alloys, 2019, 7, 584-596.	5.5	39
24	Dual Delivery of Antibiotic and Antiresorptive Drugs by Hydroxyapatite-Chitosan Composite Nanocarrier for the Treatment of Osteomyelitis. Springer Proceedings in Materials, 2019, , 72-85.	0.1	0
25	Drug and ion releasing tetracalcium phosphate based dual action cement for regenerative treatment of infected bone defects. Ceramics International, 2018, 44, 9227-9235.	2.3	12
26	Antibacterial, anti-inflammatory, and bone-regenerative dual-drug-loaded calcium phosphate nanocarriers—in vitro and in vivo studies. Drug Delivery and Translational Research, 2018, 8, 1066-1077.	3.0	35
27	Dual nanofibrous bioactive coating and antimicrobial surface treatment for infection resistant titanium implants. Progress in Organic Coatings, 2018, 121, 112-119.	1.9	28
28	Osteogenic apatite particles by sol–gel assisted electrospraying. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1941-1954.	1.6	7
29	Tailoring antibiotic release for the treatment of periodontal infrabony defects using bioactive gelatin-alginate/apatite nanocomposite films. Journal of Drug Delivery Science and Technology, 2018, 43, 57-64.	1.4	30
30	Electrospun PCL/HA coated friction stir processed AZ31/HA composites for degradable implant applications . Journal of Materials Processing Technology, 2018, 252, 398-406.	3.1	59
31	Ceramic core with polymer corona hybrid nanocarrier for the treatment of osteosarcoma with co-delivery of protein and anti-cancer drug. Nanotechnology, 2018, 29, 015101.	1.3	17
32	Additive manufacturing technologies: an overview of challenges and perspective of using electrospraying. Nanocomposites, 2018, 4, 190-214.	2.2	28
33	Electrospun 3D Scaffolds for Tissue Regeneration. Advances in Experimental Medicine and Biology, 2018, 1078, 29-47.	0.8	11
34	Antibacterial and Bioactive Surface Modifications of Titanium Implants by PCL/TiO2 Nanocomposite Coatings. Nanomaterials, 2018, 8, 860.	1.9	65
35	Silver Loaded Nanofibrous Curdlan Mat for Diabetic Wound Healing: An In Vitro and In Vivo Study. Macromolecular Materials and Engineering, 2018, 303, 1800234.	1.7	19
36	Development of Egg Shell Derived Carbonated Apatite Nanocarrier System for Drug Delivery. Journal of Nanoscience and Nanotechnology, 2018, 18, 2318-2324.	0.9	20

#	Article	IF	CITATIONS
37	Dentin remineralizing ability and enhanced antibacterial activity of strontium and hydroxyl ion co-releasing radiopaque hydroxyapatite cement. Journal of Materials Science: Materials in Medicine, 2017, 28, 95.	1.7	28
38	Nanochitosan modified glass ionomer cement with enhanced mechanical properties and fluoride release. International Journal of Biological Macromolecules, 2017, 104, 1860-1865.	3.6	33
39	Comparative evaluation of micron- and nano-sized intracanal medicaments on penetration and fracture resistance of root dentin – An in vitro study. International Journal of Biological Macromolecules, 2017, 104, 1866-1873.	3.6	30
40	Electrospun Cytocompatible Polycaprolactone Blend Composite with Enhanced Wettability for Bone Tissue Engineering. Journal of Nanoscience and Nanotechnology, 2017, 17, 2320-2328.	0.9	17
41	Electrospun Nanofibers of Curdlan (βâ€1,3 Clucan) Blend as a Potential Skin Scaffold Material. Macromolecular Materials and Engineering, 2017, 302, 1600417.	1.7	41
42	Tailoring Biodegradation of Fine Grained AZ31 Alloy Implants by Nanofibrous Coatings. Materials Today: Proceedings, 2017, 4, 6697-6703.	0.9	6
43	Electrospun 3D composite scaffolds for craniofacial critical size defects. Journal of Materials Science: Materials in Medicine, 2017, 28, 119.	1.7	8
44	Impact of Nanotechnology on 3D Bioprinting. Journal of Bionanoscience, 2017, 11, 1-6.	0.4	10
45	Bone Mineral-Like Nanoscale Amorphous Calcium Phosphate Derived from Egg Shells. Journal of Bionanoscience, 2017, 11, 297-300.	0.4	4
46	Egg shell derived apatite cement for the treatment of angular periodontal defects: A preliminary clinical and radiographic assessment. Dental, Oral, and Craniofacial Research, 2017, 4, .	0.1	10
47	Nano and ultra fine grained metallic biomaterials by severe plastic deformation techniques. Materials Technology, 2016, 31, 743-755.	1.5	19
48	Tailoring degradation of AZ31 alloy by surface pre-treatment and electrospun PCL fibrous coating. Materials Science and Engineering C, 2016, 65, 43-50.	3.8	65
49	Antibiotic delivery by nanobioceramics. Therapeutic Delivery, 2016, 7, 573-588.	1.2	12
50	Value Added Bioceramics: A Review of the Developments and Progress in India. Key Engineering Materials, 2016, 696, 3-8.	0.4	2
51	Eggshell-Derived Hydroxyapatite. Journal of Craniofacial Surgery, 2016, 27, 112-117.	0.3	34
52	Electrosprayed titania nanocups for protein delivery. Colloids and Interface Science Communications, 2016, 12, 17-20.	2.0	4
53	Tribological, electrochemical and in vitro biocompatibility properties of SiC reinforced composite coatings. Materials and Design, 2016, 95, 510-517.	3.3	32
54	In vitro and in vivo studies of biodegradable fine grained AZ31 magnesium alloy produced by equal channel angular pressing. Materials Science and Engineering C, 2016, 59, 356-367.	3.8	97

#	Article	IF	CITATIONS
55	Dual Mode Antibacterial Activity of Ion Substituted Calcium Phosphate Nanocarriers for Bone Infections. Frontiers in Bioengineering and Biotechnology, 2015, 3, 59.	2.0	26
56	Design of biocomposite materials for bone tissue regeneration. Materials Science and Engineering C, 2015, 57, 452-463.	3.8	239
57	Accelerated Self-Hardening Tetracalcium Phosphate Based Bone Cement with Enhanced Strength and Biological Behaviour. Transactions of the Indian Institute of Metals, 2015, 68, 299-304.	0.7	6
58	Acrylic cement formulations modified with calcium deficient apatite nanoparticles for orthopaedic applications. Journal of Composite Materials, 2015, 49, 2921-2933.	1.2	6
59	Effect of Processing Route and Working Temperature on Microstructure Evolution of AZ31 Magnesium Alloy During Equal Channel Angular Pressing. , 2014, 5, 841-846.		2
60	Electrospun Nanofibrous Polymer Coated Magnesium Alloy for Biodegradable Implant Applications. , 2014, 5, 817-823.		23
61	In situ synthesized TiB–TiN reinforced Ti6Al4V alloy composite coatings: Microstructure, tribological and in-vitro biocompatibility. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29, 259-271.	1.5	111
62	Friction stir processing of magnesium–nanohydroxyapatite composites with controlled in vitro degradation behavior. Materials Science and Engineering C, 2014, 39, 315-324.	3.8	109
63	Nano-hydroxyapatite reinforced AZ31 magnesium alloy by friction stir processing: a solid state processing for biodegradable metal matrix composites. Journal of Materials Science: Materials in Medicine, 2014, 25, 975-988.	1.7	85
64	Processing and mechanical behavior of lamellar structured degradable magnesium–hydroxyapatite implants. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 40, 178-189.	1.5	91
65	Enhanced protein delivery by multi-ion containing eggshell derived apatitic-alginate composite nanocarriers. Colloids and Surfaces B: Biointerfaces, 2014, 123, 542-548.	2.5	25
66	Regenerative potential and anti-bacterial activity of tetracycline loaded apatitic nanocarriers for the treatment of periodontitis. Biomedical Materials (Bristol), 2014, 9, 035002.	1.7	49
67	Accelerated Sonochemical Synthesis of Calcium Deficient Hydroxyapatite Nanoparticles: Structural and Morphological Evolution. Journal of Biomaterials and Tissue Engineering, 2014, 4, 295-299.	0.0	22
68	Cell-Laden Hydrogels for Tissue Engineering. Journal of Biomaterials and Tissue Engineering, 2014, 4, 507-535.	0.0	33
69	Eggshell derived hydroxyapatite as bone graft substitute in the healing of maxillary cystic bone defects: a preliminary report. Journal of International Oral Health, 2014, 6, 15-9.	0.0	27
70	Development of carbon nanotubes reinforced hydroxyapatite composite coatings on titanium by electrodeposition method. Corrosion Science, 2013, 73, 321-330.	3.0	102
71	Wettability and In Vitro Bioactivity Studies on Titanium Rods Processed by Equal Channel Angular Pressing. Transactions of the Indian Institute of Metals, 2013, 66, 299-304.	0.7	13
72	Role of biomineralization on the degradation of fine grained AZ31 magnesium alloy processed by groove pressing. Materials Science and Engineering C, 2013, 33, 1607-1615.	3.8	76

#	Article	IF	CITATIONS
73	Fabrication of Biomedical Implants using Laser Engineered Net Shaping (LENSâ,,¢). Transactions of the Indian Ceramic Society, 2013, 72, 169-174.	0.4	46
74	Degradation in Thermal Properties and Morphology of Polyetheretherketone-Alumina Composites Exposed to Gamma Radiation. Journal of Materials Engineering and Performance, 2012, 21, 1266-1274.	1.2	10
75	Strontiumâ€Substituted Calcium Deficient Hydroxyapatite Nanoparticles: Synthesis, Characterization, and Antibacterial Properties. Journal of the American Ceramic Society, 2012, 95, 2700-2708.	1.9	130
76	Laser processing of in situ synthesized TiB–TiN-reinforced Ti6Al4V alloy coatings. Scripta Materialia, 2012, 66, 578-581.	2.6	99
77	Radiation degradation in the mechanical properties of Polyetheretherketone–alumina composites. Journal of Nuclear Materials, 2012, 420, 338-341.	1.3	2
78	Effects of nanocrystalline calcium deficient hydroxyapatite incorporation in glass ionomer cements. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 7, 69-76.	1.5	51
79	<l>Vero</l> Cell Viability and Human Osteoblast Cell Response to Electrospun Phase Controlled Titania Nanofibers. Journal of Biomaterials and Tissue Engineering, 2012, 2, 292-298.	0.0	9
80	Mineralization of pristine chitosan film through biomimetic process. International Journal of Biological Macromolecules, 2011, 49, 385-389.	3.6	37
81	Microstructure, mechanical and wear properties of laser processed SiC particle reinforced coatings on titanium. Surface and Coatings Technology, 2011, 205, 4366-4373.	2.2	57
82	Electrospun Polycaprolactone/Poly(1,4-butylene adipate-co-polycaprolactam) Blends: Potential Biodegradable Scaffold for Bone Tissue Regeneration. Journal of Biomaterials and Tissue Engineering, 2011, 1, 30-39.	0.0	47
83	Tailoring the bioactivity of commercially pure titanium by grain refinement using groove pressing. Materials Science and Engineering C, 2010, 30, 203-208.	3.8	44
84	In situ composite coating of titania–hydroxyapatite on commercially pure titanium by microwave processing. Surface and Coatings Technology, 2010, 204, 1755-1763.	2.2	28
85	Influence of microwave power, irradiation time and polymeric additions on synthesis of nanocrystalline hydroxyapatite. Materials Research Innovations, 2010, 14, 45-50.	1.0	13
86	Effect of deacetylation time on the preparation, properties and swelling behavior of chitosan films. Carbohydrate Polymers, 2009, 78, 767-772.	5.1	92
87	Synthesis and characterization of nanocrystalline apatites from eggshells at different Ca/P ratios. Biomedical Materials (Bristol), 2009, 4, 045010.	1.7	47
88	BCP ceramic microspheres as drug delivery carriers: synthesis, characterisation and doxycycline release. Journal of Materials Science: Materials in Medicine, 2008, 19, 283-290.	1.7	46
89	Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. Journal of Materials Science: Materials in Medicine, 2008, 19, 2039-2046.	1.7	166
90	Processing and properties of injectable porous apatitic cements. Journal of the Ceramic Society of Japan, 2008, 116, 105-107.	0.5	15

#	Article	IF	CITATIONS
91	Bioceramics coating on Ti–6Al–4V alloy by microwave processing. Surface Engineering, 2007, 23, 401-405.	1.1	7
92	Antibacterial nanosized silver substituted hydroxyapatite: Synthesis and characterization. Journal of Biomedical Materials Research - Part A, 2007, 80A, 581-591.	2.1	251
93	Biocomposite nanofibres and osteoblasts for bone tissue engineering. Nanotechnology, 2007, 18, 055101.	1.3	149
94	A novel route for synthesis of nanocrystalline hydroxyapatite from eggshell waste. Journal of Materials Science: Materials in Medicine, 2007, 18, 1735-1743.	1.7	163
95	Synthesis of nanocrystalline fluorinated hydroxyapatite by microwave processing and its in vitro dissolution study. Bulletin of Materials Science, 2006, 29, 611-615.	0.8	60
96	Influence of microwave power on nanosized hydroxyapatite particles. Scripta Materialia, 2006, 55, 175-178.	2.6	70
97	Biomimetic nanocomposites for bone graft applications. Nanomedicine, 2006, 1, 177-188.	1.7	79
98	Acclerated microwave processing of nanocrystalline hydroxyapatite. Journal of Materials Science, 2005, 40, 6319-6323.	1.7	102
99	MECHANOCHEMICAL SYNTHESIS OF NANOCRYSTALLINE FLUORINATED HYDROXYAPATITE. International Journal of Nanoscience, 2005, 04, 643-649.	0.4	10
100	Hydroxyl Carbonateapatite Hybrid Bone Composites Using Carbohydrate Polymer. Journal of Composite Materials, 2005, 39, 1159-1167.	1.2	12
101	Microwave accelerated synthesis of nanosized calcium deficient hydroxyapatite. Journal of Materials Science: Materials in Medicine, 2004, 15, 1279-1284.	1.7	116
102	Heat-deproteinated xenogeneic bone from slaughterhouse waste: Physico-chemical properties. Bulletin of Materials Science, 2003, 26, 523-528.	0.8	75
103	Microwave processing of functionally graded bioactive materials. Materials Letters, 2003, 57, 2716-2721.	1.3	27
104	Fluorinated bovine hydroxyapatite: preparation and characterization. Materials Letters, 2002, 57, 429-433.	1.3	60
105	Synthesis of carbonated calcium phosphate ceramics using microwave irradiation. Biomaterials, 2000, 21, 1623-1629.	5.7	90
106	Effect of Structure and Composition on Ibuprofen Drug Delivery by Calcium Phosphate Nanocarriers. Key Engineering Materials, 0, 529-530, 495-500.	0.4	3
107	Bioactive Grain Refined Magnesium by Friction Stir Processing. Materials Science Forum, 0, 710, 264-269.	0.3	28
108	Novel Strontium Doped Zinc Calcium Phosphate Conversion Coating on AZ31 Magnesium Alloy for Biomedical Applications. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 0, 34, 57-67.	0.5	3