
Johannes Henrich Schleifenbaum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6068820/publications.pdf

Version: 2024-02-01

JOHANNES HENRICH

#	Article	IF	CITATIONS
1	Additive manufacturing of biodegradable metals: Current research status and future perspectives. Acta Biomaterialia, 2019, 98, 3-22.	8.3	176
2	Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel. Materials and Design, 2018, 145, 205-217.	7.0	150
3	Laser additive manufacturing of Zn metal parts for biodegradable applications: Processing, formation quality and mechanical properties. Materials and Design, 2018, 155, 36-45.	7.0	114
4	Densification behavior of pure Zn metal parts produced by selective laser melting for manufacturing biodegradable implants. Journal of Materials Processing Technology, 2018, 258, 128-137.	6.3	98
5	Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 767, 138327.	5.6	90
6	Development of a solvent-free polylactide/calcium carbonate composite for selective laser sintering of bone tissue engineering scaffolds. Materials Science and Engineering C, 2019, 101, 660-673.	7.3	86
7	Oxide dispersion-strengthened alloys generated by laser metal deposition of laser-generated nanoparticle-metal powder composites. Materials and Design, 2018, 154, 360-369.	7.0	82
8	Laser additive manufacturing of Zn porous scaffolds: Shielding gas flow, surface quality and densification. Journal of Materials Science and Technology, 2019, 35, 368-376.	10.7	77
9	Microstructure formation and mechanical properties of ODS steels built by laser additive manufacturing of nanoparticle coated iron-chromium powders. Acta Materialia, 2021, 206, 116566.	7.9	67
10	Influence of solution heat treatment on microstructure and tensile properties of Inconel 718 formed by high-deposition-rate laser metal deposition. Journal of Alloys and Compounds, 2018, 740, 389-399.	5.5	62
11	Influence of keyhole and conduction mode melting for top-hat shaped beam profiles in laser powder bed fusion. Journal of Materials Processing Technology, 2020, 278, 116514.	6.3	61
12	Study of nickel-based super-alloys Inconel 718 and Inconel 625 in high-deposition-rate laser metal deposition. Optics and Laser Technology, 2019, 109, 352-360.	4.6	55
13	Numerical simulation in the absorption behavior of Ti6Al4V powder materials to laser energy during SLM. Journal of Materials Processing Technology, 2019, 268, 25-36.	6.3	55
14	Depositing laser-generated nanoparticles on powders for additive manufacturing of oxide dispersed strengthened alloy parts via laser metal deposition. Japanese Journal of Applied Physics, 2018, 57, 040310.	1.5	50
15	Rapid Alloy Development of Extremely High-Alloyed Metals Using Powder Blends in Laser Powder Bed Fusion. Materials, 2019, 12, 1706.	2.9	49
16	Case Studies on Local Reinforcement of Sheet Metal Components by Laser Additive Manufacturing. Metals, 2017, 7, 113.	2.3	47
17	Efficient numerical modeling of 3D-printed lattice-cell structures using neural networks. Manufacturing Letters, 2018, 15, 147-150.	2.2	45
18	Additive manufacturing of biodegradable Zn-xWE43 porous scaffolds: Formation quality, microstructure and mechanical properties. Materials and Design, 2019, 181, 107937.	7.0	45

JOHANNES HENRICH

#	Article	IF	CITATIONS
19	The effect of homogenization temperature on the microstructure and high temperature mechanical performance of SLM-fabricated IN718 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 801, 140427.	5.6	43
20	Laser additive manufacturing of oxide dispersion strengthened steels using laser-generated nanoparticle-metal composite powders. Procedia CIRP, 2018, 74, 196-200.	1.9	33
21	Strongly Out-of-Equilibrium Columnar Solidification During Laser Powder-Bed Fusion in Additive Manufacturing. Physical Review Applied, 2019, 11, .	3.8	33
22	Additively manufactured pure zinc porous scaffolds for critical-sized bone defects of rabbit femur. Bioactive Materials, 2023, 19, 12-23.	15.6	31
23	Extreme High-Speed Laser Material Deposition (EHLA) of AISI 4340 Steel. Coatings, 2019, 9, 778.	2.6	29
24	Influence of the material properties of a poly(D,L-lactide)/β-tricalcium phosphate composite on the processability by selective laser sintering. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 87, 267-278.	3.1	28
25	Porous structure design and fabrication of metal-bonded diamond grinding wheel based on selective laser melting (SLM). International Journal of Advanced Manufacturing Technology, 2019, 100, 1451-1462.	3.0	26
26	Equipment and process windows for laser metal deposition with coaxial wire feeding. Journal of Laser Applications, 2019, 31, .	1.7	25
27	Laser polishing and 2PP structuring of inside microfluidic channels in fused silica. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	23
28	Visualization of the shielding gas flow in SLM machines by space-resolved thermal anemometry. Rapid Prototyping Journal, 2018, 24, 1296-1304.	3.2	21
29	Development of a high-speed laser material deposition process for additive manufacturing. Journal of Laser Applications, 2021, 33, .	1.7	20
30	Numerical and Experimental Study of Ti6Al4V Components Manufactured Using Powder Bed Fusion Additive Manufacturing. Jom, 2017, 69, 2711-2718.	1.9	19
31	Surface roughness in laser powder bed fusion – Interdependency of surface orientation and laser incidence. Additive Manufacturing, 2020, 36, 101437.	3.0	19
32	Ageing response of an Al-Mg-Mn-Sc-Zr alloy processed by laser metal deposition in thin-wall structures. Vacuum, 2018, 158, 121-125.	3.5	18
33	Statistical/Numerical Model of the Powder-Gas Jet for Extreme High-Speed Laser Material Deposition. Coatings, 2020, 10, 416.	2.6	17
34	Controlling microstructure and mechanical properties of additively manufactured high-strength steels by tailored solidification. Additive Manufacturing, 2020, 35, 101389.	3.0	16
35	Inner strut morphology is the key parameter in producing highly porous and mechanically stable poly(ε-caprolactone) scaffolds via selective laser sintering. Materials Science and Engineering C, 2021, 123, 111986.	7.3	15
36	Laser additive manufacturing of Zn metal parts for biodegradable implants: Effect of gas flow on evaporation and formation quality. Journal of Laser Applications, 2019, 31, .	1.7	14

JOHANNES HENRICH

#	Article	IF	CITATIONS
37	Increasing resource efficiency with an engineering decision support system for comparison of product design variants. Journal of Cleaner Production, 2019, 210, 1051-1062.	9.3	13
38	Effect of grain structure on the mechanical properties and in vitro corrosion behavior of additively manufactured pure Zn. Additive Manufacturing, 2020, 33, 101134.	3.0	13
39	Additive manufacturing of high-strength eutectic aluminium-nickel alloys – Processing and mechanical properties. Journal of Materials Processing Technology, 2021, 298, 117315.	6.3	13
40	Digital photonic production along the lines of industry 4.0. , 2018, , .		12
41	Tailoring the nanostructure of laser powder bed fusion additively manufactured maraging steel. Additive Manufacturing, 2020, 36, 101561.	3.0	11
42	Comparison of the EHLA and LPBF Process in Context of New Alloy Design Methods for LPBF. Advanced Materials Research, 0, 1161, 13-25.	0.3	10
43	Influence of Laser Energy Input and Shielding Gas Flow on Evaporation Fume during Laser Powder Bed Fusion of Zn Metal. Materials, 2021, 14, 2677.	2.9	9
44	Effect of wire feeder force control on laser metal deposition process using coaxial laser head. Journal of Laser Applications, 2021, 33, .	1.7	8
45	Influence of focal length on the laser metal deposition process with coaxial wire feeding. , 2019, , .		7
46	Formation Quality, Mechanical Properties, and Processing Behavior of Pure Zinc Parts Produced by Laser-Based Manufacturing for Biodegradable Implants. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2019, 164, 133-140.	1.0	6
47	Precise control of microstructure and mechanical properties of additively manufactured steels using elemental carbon powder. Materials Letters, 2021, 295, 129788.	2.6	6
48	Additive manufacturing of biodegradable Zn-xMg alloys: Effect of Mg content on manufacturability, microstructure and mechanical properties. Materials Today Communications, 2022, 32, 103805.	1.9	6
49	Microstructures, tensile properties, and fracture mechanisms of Inconel 718 formed by HDR-LMD with PREP and GA powders. International Journal of Advanced Manufacturing Technology, 2018, 96, 2031-2041.	3.0	5
50	Multi-physical analysis of thermo-optical effects for different Selective Laser Melting (SLM) scanning strategies. Procedia CIRP, 2018, 74, 97-101.	1.9	5
51	Particle velocity measurement in powder gas jets of coaxial powder nozzles for laser material deposition. Journal of Laser Applications, 2021, 33, .	1.7	5
52	Laser Powder Bed Fusion of Advanced High-Strength Steels—Modification of Deformation Mechanisms by Increasing Stacking Fault Energy. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2019, 164, 127-132.	1.0	3
53	Laser Metal Deposition of a Nearâ€Eutectic Alâ€Ni Alloy. Advanced Engineering Materials, 2022, 24, .	3.5	3
54	Influence of Degradation Product Thickness on the Elastic Stiffness of Porous Absorbable Scaffolds Made from an Bioabsorbable Zn–Mg Alloy. Materials, 2021, 14, 6027.	2.9	2