Lionel Moulédous

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6068672/publications.pdf

Version: 2024-02-01

50 papers

1,447 citations

394421 19 h-index 330143 37 g-index

51 all docs

51 docs citations

51 times ranked

1652 citing authors

#	Article	IF	CITATIONS
1	The NOP antagonist BTRX-246040 increases stress resilience in mice without affecting adult neurogenesis in the hippocampus. Neuropharmacology, 2022, 212, 109077.	4.1	5
2	HA-MOP knockin mice express the canonical $\hat{A}\mu\text{-opioid}$ receptor but lack detectable splice variants. Communications Biology, 2021, 4, 1070.	4.4	9
3	Pain sensing neurons promote tissue regeneration in adult mice. Npj Regenerative Medicine, 2021, 6, 63.	5.2	11
4	Pharmacological insight into the activation of the human neuropeptide FF2 receptor. Peptides, 2020, 134, 170406.	2.4	1
5	Tibial post fracture pain is reduced in kinin receptors deficient mice and blunted by kinin receptor antagonists. Journal of Translational Medicine, 2019, 17, 346.	4.4	9
6	Development and characterization of sphingosine 1-phosphate receptor 1 monoclonal antibody suitable for cell imaging and biochemical studies of endogenous receptors. PLoS ONE, 2019, 14, e0213203.	2.5	6
7	Agonist-selective NOP receptor phosphorylation correlates in vitro and in vivo and reveals differential post-activation signaling by chemically diverse agonists. Science Signaling, 2019, 12, .	3.6	36
8	Mitochondria in Developmental and Adult Neurogenesis. Neurotoxicity Research, 2019, 36, 257-267.	2.7	39
9	The Nociceptin/Orphanin FQ System and the Regulation of Memory. Handbook of Experimental Pharmacology, 2018, 254, 259-278.	1.8	10
10	Activation of nociceptin/orphanin FQ receptors inhibits contextual fear memory reconsolidation. Neuropharmacology, 2017, 125, 39-49.	4.1	15
11	Beneficial effects of levobupivacaine regional anaesthesia on postoperative opioid induced hyperalgesia in diabetic mice. Journal of Translational Medicine, 2015, 13, 208.	4.4	18
12	Roles of the ubiquitin proteasome system in the effects of drugs of abuse. Frontiers in Molecular Neuroscience, 2015, 7, 99.	2.9	21
13	Phosphoproteomic analysis of the mouse brain muâ€opioid (MOP) receptor. FEBS Letters, 2015, 589, 2401-2408.	2.8	17
14	Identification and Functional Characterization of the Phosphorylation Sites of the Neuropeptide FF2 Receptor. Journal of Biological Chemistry, 2014, 289, 33754-33766.	3.4	15
15	Heterologous Regulation of Mu-Opioid (MOP) Receptor Mobility in the Membrane of SH-SY5Y Cells. Journal of Biological Chemistry, 2014, 289, 28697-28706.	3.4	19
16	Solubilization and reconstitution of the mu-opioid receptor expressed in human neuronal SH-SY5Y and CHO cells. Peptides, 2014, 55, 79-84.	2.4	6
17	Evaluation of commercial antibodies against human sphingosine-1-phosphate receptor 1. Naunyn-Schmiedeberg's Archives of Pharmacology, 2014, 387, 427-431.	3.0	12
18	A high-affinity, radioiodinatable neuropeptide FF analogue incorporating a photolabile p-(4-hydroxybenzoyl)phenylalanine. Analytical Biochemistry, 2014, 453, 50-54.	2.4	1

#	Article	IF	CITATIONS
19	Loss of Morphine Reward and Dependence in Mice Lacking G Protein–Coupled Receptor Kinase 5. Biological Psychiatry, 2014, 76, 767-774.	1.3	45
20	Involvement of Protein Degradation by the Ubiquitin Proteasome System in Opiate Addictive Behaviors. Neuropsychopharmacology, 2013, 38, 596-604.	5.4	24
21	Role of kinin B2 receptors in opioid-induced hyperalgesia in inflammatory pain in mice. Biological Chemistry, 2013, 394, 361-368.	2.5	12
22	Denatured G-Protein Coupled Receptors as Immunogens to Generate Highly Specific Antibodies. PLoS ONE, 2012, 7, e46348.	2.5	12
23	GRK2 Protein-mediated Transphosphorylation Contributes to Loss of Function of μ-Opioid Receptors Induced by Neuropeptide FF (NPFF2) Receptors. Journal of Biological Chemistry, 2012, 287, 12736-12749.	3.4	37
24	Involvement of neuropeptide FF receptors in neuroadaptive responses to acute and chronic opiate treatments. British Journal of Pharmacology, 2012, 165, 424-435.	5.4	64
25	Central Apelin Controls Glucose Homeostasis <i>via</i> a Nitric Oxide-Dependent Pathway in Mice. Antioxidants and Redox Signaling, 2011, 15, 1477-1496.	5.4	66
26	Opioidâ€modulating properties of the neuropeptide FF system. BioFactors, 2010, 36, 423-429.	5.4	60
27	Opposite control of body temperature by NPFF1 and NPFF2 receptors in mice. Neuropeptides, 2010, 44, 453-456.	2.2	23
28	Modulation of basal and morphineâ€induced neuronal activity by a NPFF ₂ selective agonist measured by câ€Fos mapping of the mouse brain. Synapse, 2010, 64, 672-681.	1.2	19
29	Modulation by Neuropeptide FF of the interaction of Mu-opioid (MOP) receptor with G-proteins. Neurochemistry International, 2010, 56, 768-773.	3.8	9
30	Central locomotor and cognitive effects of a NPFF receptor agonist in mouse. Peptides, 2010, 31, 221-226.	2.4	9
31	Pharmacological characterization of the mouse NPFF2 receptor. Peptides, 2010, 31, 215-220.	2.4	11
32	Description of the lowâ€affinity interaction between nociceptin and the second extracellular loop of its receptor by fluorescence and NMR spectroscopies. Journal of Peptide Science, 2008, 14, 1183-1194.	1.4	6
33	Protein degradation, as with protein synthesis, is required during not only longâ€term spatial memory consolidation but also reconsolidation. European Journal of Neuroscience, 2008, 27, 3009-3019.	2.6	125
34	Neuropeptide FF-sensitive confinement of mu opioid receptor does not involve lipid rafts in SH-SY5Y cells. Biochemical and Biophysical Research Communications, 2008, 373, 80-84.	2.1	13
35	Extracellular signal-regulated kinase (ERK) inhibition does not prevent the development or expression of tolerance to and dependence on morphine in the mouse. Pharmacology Biochemistry and Behavior, 2007, 88, 39-46.	2.9	21
36	Effect of long-term exposure of SH-SY5Y cells to morphine: a whole cell proteomic analysis. Proteome Science, 2006, 4, 23.	1.7	17

#	Article	IF	CITATIONS
37	Long-Term Morphine Treatment Enhances Proteasome-Dependent Degradation of $G\hat{I}^2$ in Human Neuroblastoma SH-SY5Y Cells: Correlation with Onset of Adenylate Cyclase Sensitization. Molecular Pharmacology, 2005, 68, 467-476.	2.3	34
38	Proteomic Changes in the Membrane Fraction of SH-SY5Y Neuroblastoma Cells Induced by Fentanyl Treatment. Journal of Cancer Pain and Symptom Palliation, 2005, $1,35-43$.	0.2	0
39	Modulation of extracellular signal-regulated kinase (ERK) activity by acute and chronic opioid treatment in neuronal and glial cell lines. Journal of Neurochemistry, 2004, 90, 1371-1377.	3.9	9
40	Nitroglycerin inhibits the development of morphine tolerance and dependence in rats. Pharmacology Biochemistry and Behavior, 2003, 74, 551-557.	2.9	3
41	Proteomic analysis of immunostained, laser-capture microdissected brain samples. Electrophoresis, 2003, 24, 296-302.	2.4	52
42	Navigated laser capture microdissection as an alternative to direct histological staining for proteomic analysis of brain samples. Proteomics, 2003, 3, 610-615.	2.2	60
43	Gene Arrays and Proteomics: A Primer. , 2003, 84, 141-154.		1
44	Lack of compatibility of histological staining methods with proteomic analysis of laser-capture microdissected brain samples. Journal of Biomolecular Techniques, 2002, 13, 258-64.	1.5	21
45	Direct Identification of a Peptide Binding Region in the Opioid Receptor-like 1 Receptor by Photoaffinity Labeling with [Bpa10,Tyr14]Nociceptin. Journal of Biological Chemistry, 2000, 275, 29268-29274.	3.4	24
46	Functional Inactivation of the Nociceptin Receptor by Alanine Substitution of Glutamine 286 at the C Terminus of Transmembrane Segment VI: Evidence from a Site-Directed Mutagenesis Study of the ORL1 Receptor Transmembrane-Binding Domain. Molecular Pharmacology, 2000, 57, 495-502.	2.3	52
47	The nociceptin (ORL1) receptor: molecular cloning and functional architecture. Peptides, 2000, 21, 893-900.	2.4	55
48	Tissue distribution of the opioid receptor-like (ORL1) receptor. Peptides, 2000, 21, 907-917.	2.4	223
49	Characterization of a new radioiodinated probe for the $\hat{l}\pm 2C$ adrenoceptor in the mouse brain. Neurochemistry International, 2000, 36, 7-18.	3.8	12
50	Distinct Mechanisms for Activation of the Opioid Receptor-Like 1 and κ-Opioid Receptors by Nociceptin and Dynorphin A. Molecular Pharmacology, 1999, 55, 324-331.	2.3	78