Delphine Javelaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6068398/publications.pdf

Version: 2024-02-01

218677 361022 3,576 41 26 35 citations g-index h-index papers 43 43 43 5348 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Large-scale pan-cancer analysis reveals broad prognostic association between TGF- \hat{l}^2 ligands, not Hedgehog, and GLI1/2 expression in tumors. Scientific Reports, 2020, 10, 14491.	3.3	10
2	GLI1/GLI2 functional interplay is required to control Hedgehog/GLI targets gene expression. Biochemical Journal, 2020, 477, 3131-3145.	3.7	23
3	Transcriptional repression of the tyrosinase-related protein 2 gene by transforming growth factor- \hat{I}^2 and the Kruppel-like transcription factor GLI2. Journal of Dermatological Science, 2019, 94, 321-329.	1.9	2
4	How Bad Is the Hedgehog? GLI-Dependent, Hedgehog-Independent Cancers on the Importance of Biomarkers for Proper Patients Selection. Journal of Investigative Dermatology Symposium Proceedings, 2018, 19, S87-S88.	0.8	2
5	487 Expression of metastasis and invasion related molecules in malignant melanoma. Journal of Investigative Dermatology, 2016, 136, S243.	0.7	1
6	Cell Density Sensing Alters TGF-Î ² Signaling in a Cell-Type-Specific Manner, Independent from Hippo Pathway Activation. Developmental Cell, 2015, 32, 640-651.	7.0	59
7	Abstract LB-028: Cell density sensing alters TGF-beta signaling in a cell type-specific manner, independent from Hippo pathway activation. , 2015, , .		O
8	<scp>GLI</scp> 2 cooperates with <scp>ZEB</scp> 1 for transcriptional repression of <scp><i>CDH1</i></scp> expression in human melanoma cells. Pigment Cell and Melanoma Research, 2013, 26, 861-873.	3.3	30
9	Overlapping activities of TGF- \hat{l}^2 and Hedgehog signaling in cancer: Therapeutic targets for cancer treatment., 2013, 137, 183-199.		51
10	Insights into the Transforming Growth Factor- \hat{l}^2 Signaling Pathway in Cutaneous Melanoma. Annals of Dermatology, 2013, 25, 135.	0.9	72
11	The Role of TGF-β in Cutaneous Melanoma Biology. , 2013, , 235-254.		O
12	Expression of Microphthalmia-associated Transcription Factor (MITF), Which Is Critical for Melanoma Progression, Is Inhibited by Both Transcription Factor GLI2 and Transforming Growth Factor-β. Journal of Biological Chemistry, 2012, 287, 17996-18004.	3.4	84
13	Halofuginone Inhibits the Establishment and Progression of Melanoma Bone Metastases. Cancer Research, 2012, 72, 6247-6256.	0.9	66
14	Systematic classification of melanoma cells by phenotypeâ€specific gene expression mapping. Pigment Cell and Melanoma Research, 2012, 25, 343-353.	3.3	155
15	Crosstalk between TGF $\hat{\mathbf{a}}\in\hat{\mathbf{f}}^2$ and hedgehog signaling in cancer. FEBS Letters, 2012, 586, 2016-2025.	2.8	135
16	GLI2 and Mâ€MITF transcription factors control exclusive gene expression programs and inversely regulate invasion in human melanoma cells. Pigment Cell and Melanoma Research, 2011, 24, 932-943.	3.3	71
17	Efficient TGF- \hat{l}^2 /SMAD signaling in human melanoma cells associated with high c-SKI/SnoN expression. Molecular Cancer, 2011, 10, 2.	19.2	46
18	Correction: TGF-Î ² -RI Kinase Inhibitor SD-208 Reduces the Development and Progression of Melanoma Bone Metastases. Cancer Research, 2011, 71, 2023-2023.	0.9	0

#	Article	IF	Citations
19	TGF- \hat{I}^2 /SMAD/GLI2 Signaling Axis in Cancer Progression and Metastasis. Cancer Research, 2011, 71, 5606-5610.	0.9	182
20	TGF- \hat{l}^2 -RI Kinase Inhibitor SD-208 Reduces the Development and Progression of Melanoma Bone Metastases. Cancer Research, 2011, 71, 175-184.	0.9	203
21	GLI2-Mediated Melanoma Invasion and Metastasis. Journal of the National Cancer Institute, 2010, 102, 1148-1159.	6.3	149
22	Smad7 restricts melanoma invasion by restoring Nâ€cadherin expression and establishing heterotypic cell–cell interactions in vivo. Pigment Cell and Melanoma Research, 2010, 23, 795-808.	3.3	24
23	Abstract LB-240: Smad7 blocks melanoma invasion by suppressing n-cadherin cleavage and preserving heterotypic cell-cell interactionsin vivo, 2010, , .		0
24	Transforming growth factorâ€Î² in cutaneous melanoma. Pigment Cell and Melanoma Research, 2008, 21, 123-132.	3.3	125
25	JNK supports survival in melanoma cells by controlling cell cycle arrest and apoptosis. Pigment Cell and Melanoma Research, 2008, 21, 429-438.	3.3	51
26	Response to the letter by Reed etÂal Pigment Cell and Melanoma Research, 2008, 21, 496-497.	3.3	2
27	Transforming Growth Factor \hat{l}^2 Suppresses the Ability of Ski to Inhibit Tumor Metastasis by Inducing Its Degradation. Cancer Research, 2008, 68, 3277-3285.	0.9	94
28	Stable Overexpression of Smad7 in Human Melanoma Cells Impairs Bone Metastasis. Cancer Research, 2007, 67, 2317-2324.	0.9	187
29	Stable overexpression of Smad7 in human melanoma cells inhibits bone metastasis. Melanoma Research, 2006, 16, S93.	1.2	0
30	Interplays Between The Smad and Map Kinase Signaling Pathways. , 2006, , 317-334.		2
31	Stable overexpression of Smad7 in human melanoma cells inhibits their tumorigenicity in vitro and in vivo. Oncogene, 2005, 24, 7624-7629.	5.9	100
32	Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF- \hat{l}^2 : implications for carcinogenesis. Oncogene, 2005, 24, 5742-5750.	5.9	373
33	Amelioration of Radiation-induced Fibrosis. Journal of Biological Chemistry, 2004, 279, 15167-15176.	3.4	187
34	NF-κB activation prevents apoptotic oxidative stress via an increase of both thioredoxin and MnSOD levels in TNFα-treated Ewing sarcoma cells. FEBS Letters, 2004, 578, 111-115.	2.8	109
35	Mammalian transforming growth factor- \hat{l}^2 s: Smad signaling and physio-pathological roles. International Journal of Biochemistry and Cell Biology, 2004, 36, 1161-1165.	2.8	153
36	TGF- \hat{l}^2 -induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. Journal of Dermatological Science, 2004, 35, 83-92.	1.9	392

#	Article	IF	CITATIONS
37	Disruption of Basal JNK Activity Differentially Affects Key Fibroblast Functions Important for Wound Healing. Journal of Biological Chemistry, 2003, 278, 24624-24628.	3.4	103
38	Inactivation of p21Sensitizes Cells to Apoptosis via an Increase of Both p14ARF and p53 Levels and an Alteration of the Bax/Bcl-2 Ratio. Journal of Biological Chemistry, 2002, 277, 37949-37954.	3.4	107
39	Inhibition of constitutive NF-κB activity suppresses tumorigenicity of ewing sarcoma EW7 cells. International Journal of Cancer, 2002, 98, 193-198.	5.1	25
40	NF-κB activation results in rapid inactivation of JNK in TNFα-treated Ewing sarcoma cells: a mechanism for the anti-apoptotic effect of NF-κB. Oncogene, 2001, 20, 4365-4372.	5.9	123
41	Induction of p21Waf1/Cip1 by TNFα requires NF-κB activity and antagonizes apoptosis in Ewing tumor cells. Oncogene, 2000, 19, 61-68.	5.9	60