Delphine Javelaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6068398/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TGF-Î ² -induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. Journal of Dermatological Science, 2004, 35, 83-92.	1.9	392
2	Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-β: implications for carcinogenesis. Oncogene, 2005, 24, 5742-5750.	5.9	373
3	TGF-β-RI Kinase Inhibitor SD-208 Reduces the Development and Progression of Melanoma Bone Metastases. Cancer Research, 2011, 71, 175-184.	0.9	203
4	Amelioration of Radiation-induced Fibrosis. Journal of Biological Chemistry, 2004, 279, 15167-15176.	3.4	187
5	Stable Overexpression of Smad7 in Human Melanoma Cells Impairs Bone Metastasis. Cancer Research, 2007, 67, 2317-2324.	0.9	187
6	TGF-β/SMAD/GLI2 Signaling Axis in Cancer Progression and Metastasis. Cancer Research, 2011, 71, 5606-5610.	0.9	182
7	Systematic classification of melanoma cells by phenotypeâ€specific gene expression mapping. Pigment Cell and Melanoma Research, 2012, 25, 343-353.	3.3	155
8	Mammalian transforming growth factor-βs: Smad signaling and physio-pathological roles. International Journal of Biochemistry and Cell Biology, 2004, 36, 1161-1165.	2.8	153
9	GLI2-Mediated Melanoma Invasion and Metastasis. Journal of the National Cancer Institute, 2010, 102, 1148-1159.	6.3	149
10	Crosstalk between TGFâ $\in \hat{I}^2$ and hedgehog signaling in cancer. FEBS Letters, 2012, 586, 2016-2025.	2.8	135
11	Transforming growth factorâ€Î² in cutaneous melanoma. Pigment Cell and Melanoma Research, 2008, 21, 123-132.	3.3	125
12	NF-κB activation results in rapid inactivation of JNK in TNFα-treated Ewing sarcoma cells: a mechanism for the anti-apoptotic effect of NF-κB. Oncogene, 2001, 20, 4365-4372.	5.9	123
13	NF-lºB activation prevents apoptotic oxidative stress via an increase of both thioredoxin and MnSOD levels in TNFl±-treated Ewing sarcoma cells. FEBS Letters, 2004, 578, 111-115.	2.8	109
14	Inactivation of p21Sensitizes Cells to Apoptosis via an Increase of Both p14ARF and p53 Levels and an Alteration of the Bax/Bcl-2 Ratio. Journal of Biological Chemistry, 2002, 277, 37949-37954.	3.4	107
15	Disruption of Basal JNK Activity Differentially Affects Key Fibroblast Functions Important for Wound Healing. Journal of Biological Chemistry, 2003, 278, 24624-24628.	3.4	103
16	Stable overexpression of Smad7 in human melanoma cells inhibits their tumorigenicity in vitro and in vivo. Oncogene, 2005, 24, 7624-7629.	5.9	100
17	Transforming Growth Factor-Î ² Suppresses the Ability of Ski to Inhibit Tumor Metastasis by Inducing Its Degradation. Cancer Research, 2008, 68, 3277-3285.	0.9	94
18	Expression of Microphthalmia-associated Transcription Factor (MITF), Which Is Critical for Melanoma Progression, Is Inhibited by Both Transcription Factor GLI2 and Transforming Growth Factor-β. Journal of Biological Chemistry, 2012, 287, 17996-18004.	3.4	84

DELPHINE JAVELAUD

#	Article	IF	CITATIONS
19	Insights into the Transforming Growth Factor-Î ² Signaling Pathway in Cutaneous Melanoma. Annals of Dermatology, 2013, 25, 135.	0.9	72
20	GLI2 and Mâ€MITF transcription factors control exclusive gene expression programs and inversely regulate invasion in human melanoma cells. Pigment Cell and Melanoma Research, 2011, 24, 932-943.	3.3	71
21	Halofuginone Inhibits the Establishment and Progression of Melanoma Bone Metastases. Cancer Research, 2012, 72, 6247-6256.	0.9	66
22	Induction of p21Waf1/Cip1 by TNFα requires NF-κB activity and antagonizes apoptosis in Ewing tumor cells. Oncogene, 2000, 19, 61-68.	5.9	60
23	Cell Density Sensing Alters TGF-β Signaling in a Cell-Type-Specific Manner, Independent from Hippo Pathway Activation. Developmental Cell, 2015, 32, 640-651.	7.0	59
24	JNK supports survival in melanoma cells by controlling cell cycle arrest and apoptosis. Pigment Cell and Melanoma Research, 2008, 21, 429-438.	3.3	51
25	Overlapping activities of TGF-β and Hedgehog signaling in cancer: Therapeutic targets for cancer treatment. , 2013, 137, 183-199.		51
26	Efficient TGF-β/SMAD signaling in human melanoma cells associated with high c-SKI/SnoN expression. Molecular Cancer, 2011, 10, 2.	19.2	46
27	<scp>GLI</scp> 2 cooperates with <scp>ZEB</scp> 1 for transcriptional repression of <scp><i>CDH1</i></scp> expression in human melanoma cells. Pigment Cell and Melanoma Research, 2013, 26, 861-873.	3.3	30
28	Inhibition of constitutive NF-κB activity suppresses tumorigenicity of ewing sarcoma EW7 cells. International Journal of Cancer, 2002, 98, 193-198.	5.1	25
29	Smad7 restricts melanoma invasion by restoring Nâ€cadherin expression and establishing heterotypic cell–cell interactions in vivo. Pigment Cell and Melanoma Research, 2010, 23, 795-808.	3.3	24
30	GLI1/GLI2 functional interplay is required to control Hedgehog/GLI targets gene expression. Biochemical Journal, 2020, 477, 3131-3145.	3.7	23
31	Large-scale pan-cancer analysis reveals broad prognostic association between TGF-β ligands, not Hedgehog, and GLI1/2 expression in tumors. Scientific Reports, 2020, 10, 14491.	3.3	10
32	Response to the letter by Reed etÂal Pigment Cell and Melanoma Research, 2008, 21, 496-497.	3.3	2
33	How Bad Is the Hedgehog? GLI-Dependent, Hedgehog-Independent Cancers on the Importance of Biomarkers for Proper Patients Selection. Journal of Investigative Dermatology Symposium Proceedings, 2018, 19, S87-S88.	0.8	2
34	Transcriptional repression of the tyrosinase-related protein 2 gene by transforming growth factor-β and the Kruppel-like transcription factor GLI2. Journal of Dermatological Science, 2019, 94, 321-329.	1.9	2
35	Interplays Between The Smad and Map Kinase Signaling Pathways. , 2006, , 317-334.		2
36	487 Expression of metastasis and invasion related molecules in malignant melanoma. Journal of Investigative Dermatology, 2016, 136, S243.	0.7	1

DELPHINE JAVELAUD

#	Article	IF	CITATIONS
37	Stable overexpression of Smad7 in human melanoma cells inhibits bone metastasis. Melanoma Research, 2006, 16, S93.	1.2	0
38	Correction: TGF-β-RI Kinase Inhibitor SD-208 Reduces the Development and Progression of Melanoma Bone Metastases. Cancer Research, 2011, 71, 2023-2023.	0.9	0
39	Abstract LB-240: Smad7 blocks melanoma invasion by suppressing n-cadherin cleavage and preserving heterotypic cell-cell interactionsin vivo , 2010, , .		0
40	The Role of TGF-β in Cutaneous Melanoma Biology. , 2013, , 235-254.		0
41	Abstract LB-028: Cell density sensing alters TGF-beta signaling in a cell type-specific manner, independent from Hippo pathway activation. , 2015, , .		0