Sebastian Noelle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/606688/publications.pdf Version: 2024-02-01

SERASTIAN NOELLE

#	Article	lF	CITATIONS
1	A unified surface-gradient and hydrostatic reconstruction scheme for the shallow water equations. Journal of Computational Physics, 2022, 467, 111463.	1.9	5
2	Well-balanced discontinuous Galerkin scheme for 2 × 2 hyperbolic balance law. Journal of Computational Physics, 2021, 429, 110011.	1.9	6
3	Comparison of Fast Shallow-Water Schemes on Real-World Floods. Journal of Hydraulic Engineering, 2020, 146, 05019005.	0.7	9
4	A fast second-order shallow water scheme on two-dimensional structured grids over abrupt topography. Advances in Water Resources, 2019, 127, 89-108.	1.7	36
5	A note on the stability of implicit-explicit flux-splittings for stiff systems of hyperbolic conservation laws. Communications in Mathematical Sciences, 2018, 16, 1-15.	O.5	9
6	Comparison of Shallow Water Models for Rapid Channel Flows. Springer Proceedings in Mathematics and Statistics, 2018, , 605-616.	0.1	0
7	A New Hydrostatic Reconstruction Scheme Based on Subcell Reconstructions. SIAM Journal on Numerical Analysis, 2017, 55, 758-784.	1.1	46
8	A New Stable Splitting for the Isentropic Euler Equations. Journal of Scientific Computing, 2017, 70, 1390-1407.	1.1	19
9	Flux Splitting for Stiff Equations: A Notion on Stability. Journal of Scientific Computing, 2015, 64, 522-540.	1.1	13
10	IMEX Large Time Step Finite Volume Methods for Low Froude Number Shallow Water Flows. Communications in Computational Physics, 2014, 16, 307-347.	0.7	38
11	A Well-Balanced Reconstruction of Wet/Dry Fronts for the Shallow Water Equations. Journal of Scientific Computing, 2013, 56, 267-290.	1.1	93
12	A wellâ€balanced stable generalized Riemann problem scheme for shallow water equations using adaptive moving unstructured triangular meshes. International Journal for Numerical Methods in Fluids, 2013, 73, 266-283.	0.9	18
13	A Note on Adjoint Error Estimation for One-Dimensional Stationary Balance Laws with Shocks. SIAM Journal on Numerical Analysis, 2013, 51, 126-136.	1.1	1
14	Finite Volume Evolution Galerkin Methods for the Shallow Water Equations with Dry Beds. Communications in Computational Physics, 2011, 10, 371-404.	0.7	84
15	On the Advantage of Well-Balanced Schemes forÂMoving-Water Equilibria of the Shallow Water Equations. Journal of Scientific Computing, 2011, 48, 339-349.	1.1	70
16	On adaptive timestepping for weakly instationary solutions of hyperbolic conservation laws via adjoint error control. International Journal for Numerical Methods in Biomedical Engineering, 2010, 26, 790-806.	1.0	5
17	Adaptive Timestep Control for Nonstationary Solutions of the Euler Equations. SIAM Journal of Scientific Computing, 2010, 32, 1617-1651.	1.3	2
18	Timestep Control for Weakly Instationary Flows. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2010, , 53-75.	0.2	0

SEBASTIAN NOELLE

#	Article	IF	CITATIONS
19	High-order well-balanced finite-volume schemes for barotropic flows: Development and numerical comparisons. Ocean Modelling, 2007, 18, 53-79.	1.0	9
20	Well-balanced finite volume evolution Galerkin methods for the shallow water equations. Journal of Computational Physics, 2007, 221, 122-147.	1.9	66
21	High-order well-balanced finite volume WENO schemes for shallow water equation with moving water. Journal of Computational Physics, 2007, 226, 29-58.	1.9	202
22	3D adaptive central schemes: Part I. Algorithms for assembling the dual mesh. Applied Numerical Mathematics, 2006, 56, 778-799.	1.2	5
23	Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. Journal of Computational Physics, 2006, 213, 474-499.	1.9	254
24	Numerical comparison of the method of transport to a standard scheme. Computers and Fluids, 2005, 34, 541-560.	1.3	3
25	On the connection between some Riemann-solver free approaches to the approximation of multi-dimensional systems of hyperbolic conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis, 2004, 38, 989-1009.	0.8	4
26	Title is missing!. Journal of Scientific Computing, 2003, 18, 69-81.	1.1	13
27	Shock waves, dead zones and particle-free regions in rapid granular free-surface flows. Journal of Fluid Mechanics, 2003, 491, 161-181.	1.4	262
28	On the Artificial Compression Method for Second-Order Nonoscillatory Central Difference Schemes for Systems of Conservation Laws. SIAM Journal of Scientific Computing, 2003, 24, 1157-1174.	1.3	100
29	Convergence of Approximate Solutions of Conservation Laws. , 2003, , 417-430.		2
30	Shock-Capturing and Front-Tracking Methods for Granular Avalanches. Journal of Computational Physics, 2002, 175, 269-301.	1.9	112
31	Multidimensional Flux-Vector-Splitting and High-Resolution Characteristic Schemes. , 2001, , 671-676.		0
32	Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and HamiltonJacobi Equations. SIAM Journal of Scientific Computing, 2001, 23, 707-740.	1.3	691
33	Flow of dense avalanches past obstructions. Annals of Glaciology, 2001, 32, 281-284.	2.8	54
34	An accurate shock-capturing finite-difference method to solve the Savage-Hutter equations in avalanche dynamics. Annals of Glaciology, 2001, 32, 263-267.	2.8	19
35	The MoT-ICE: A New Multi-dimensional Wave-propagation-algorithm Based on Fey's Method of Transport. With Application to the Euler- and MHD-equations. , 2001, , 373-380.		1

An Adaptive Staggered Grid Scheme for Conservation Laws. , 2001, , 775-784.

3

SEBASTIAN NOELLE

#	Article	IF	CITATIONS
37	The MoT-ICE: A New High-Resolution Wave-Propagation Algorithm for Multidimensional Systems of Conservation Laws Based on Fey's Method of Transport. Journal of Computational Physics, 2000, 164, 283-334.	1.9	36
38	A New Convergence Proof for Finite Volume Schemes Using the Kinetic Formulation of Conservation Laws. SIAM Journal on Numerical Analysis, 2000, 37, 742-757.	1.1	16
39	Radially symmetric solutions for a class of hyperbolic systems of conservation laws. Zeitschrift Fur Angewandte Mathematik Und Physik, 1997, 48, 676-679.	0.7	1
40	A note on entropy inequalities and error estimates for higher-order accurate finite volume schemes on irregular families of grids. Mathematics of Computation, 1996, 65, 1155-1164.	1.1	19
41	Development of singularities for the complex Burgers' equation. Nonlinear Analysis: Theory, Methods & Applications, 1996, 26, 1313-1321.	0.6	4
42	Convergence of higher order upwind finite volume schemes on unstructured grids for scalar conservation laws in several space dimensions. Numerische Mathematik, 1995, 71, 527-560.	0.9	54
43	Convergence of higher order finite volume schemes on irregular grids. Advances in Computational Mathematics, 1995, 3, 197-218.	0.8	20
44	Hyperbolic Systems of Conservation Laws, the Weyl Equation, and Multidimensional Upwinding. Journal of Computational Physics, 1994, 115, 22-26.	1.9	5