Stefania Sartini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6066816/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pyrido[1,2- <i>a</i>]pyrimidin-4-one Derivatives as a Novel Class of Selective Aldose Reductase Inhibitors Exhibiting Antioxidant Activity. Journal of Medicinal Chemistry, 2007, 50, 4917-4927.	2.9	130
2	FOXD1–ALDH1A3 Signaling Is a Determinant for the Self-Renewal and Tumorigenicity of Mesenchymal Glioma Stem Cells. Cancer Research, 2016, 76, 7219-7230.	0.4	120
3	Sampling protein motion and solvent effect during ligand binding. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1467-1472.	3.3	100
4	Identification of 5-arylidene-4-thiazolidinone derivatives endowed with dual activity as aldose reductase inhibitors and antioxidant agents for the treatment of diabetic complications. European Journal of Medicinal Chemistry, 2011, 46, 2797-2806.	2.6	94
5	Novel Pyrazolopyrimidine Derivatives as Tyrosine Kinase Inhibitors with Antitumoral Activity in Vitro and in Vivo in Papillary Dedifferentiated Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E288-E296.	1.8	71
6	Naphtho[1,2-d]isothiazole Acetic Acid Derivatives as a Novel Class of Selective Aldose Reductase Inhibitors. Journal of Medicinal Chemistry, 2005, 48, 6897-6907.	2.9	53
7	How Reliable Are Current Docking Approaches for Structure-Based Drug Design? Lessons from Aldose Reductase. Angewandte Chemie - International Edition, 2007, 46, 3575-3578.	7.2	53
8	CLM94, a Novel Cyclic Amide with Anti-VEGFR-2 and Antiangiogenic Properties, Is Active against Primary Anaplastic Thyroid Cancer in Vitro and in Vivo. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E528-E536.	1.8	49
9	Acetic Acid Aldose Reductase Inhibitors Bearing a Five-Membered Heterocyclic Core with Potent Topical Activity in a Visual Impairment Rat Model. Journal of Medicinal Chemistry, 2008, 51, 3182-3193.	2.9	47
10	Design, synthesis and biological evaluation of new classes of thieno[3,2-d]pyrimidinone and thieno[1,2,3]triazine as inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2). European Journal of Medicinal Chemistry, 2013, 63, 765-781.	2.6	46
11	CLM3, a Multitarget Tyrosine Kinase Inhibitor With Antiangiogenic Properties, Is Active Against Primary Anaplastic Thyroid Cancer In Vitro and In Vivo. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E572-E581.	1.8	46
12	Exploiting the Pyrazolo[3,4-d]pyrimidin-4-one Ring System as a Useful Template To Obtain Potent Adenosine Deaminase Inhibitors. Journal of Medicinal Chemistry, 2009, 52, 1681-1692.	2.9	44
13	Progresses in the pursuit of aldose reductase inhibitors: The structure-based lead optimization step. European Journal of Medicinal Chemistry, 2012, 51, 216-226.	2.6	41
14	A New Approach to Control the Enigmatic Activity of Aldose Reductase. PLoS ONE, 2013, 8, e74076.	1.1	39
15	Imidazo[1,2- <i>a</i>]pyridine Derivatives as Aldehyde Dehydrogenase Inhibitors: Novel Chemotypes to Target Glioblastoma Stem Cells. Journal of Medicinal Chemistry, 2020, 63, 4603-4616.	2.9	38
16	Pursuing Aldose Reductase Inhibitors through in Situ Cross-Docking and Similarity-Based Virtual Screening. Journal of Medicinal Chemistry, 2009, 52, 5578-5581.	2.9	36
17	Computational Studies of Epidermal Growth Factor Receptor: Docking Reliability, Three-Dimensional Quantitative Structureâ ^{~,} Activity Relationship Analysis, and Virtual Screening Studies. Journal of Medicinal Chemistry, 2009, 52, 964-97 <u>5.</u>	2.9	34
18	Evidence for a Novel Binding Site Conformer of Aldose Reductase in Ligand-Bound Stateâ€. Journal of Molecular Biology, 2007, 369, 186-197.	2.0	33

STEFANIA SARTINI

#	Article	IF	CITATIONS
19	PMMA/Polysaccharides Nanofilm Loaded with Adenosine Deaminase Inhibitor for Targeted Anti-inflammatory Drug Delivery. Langmuir, 2013, 29, 13190-13197.	1.6	32
20	Nanostructured ultra-thin patches for ultrasound-modulated delivery of anti-restenotic drug. International Journal of Nanomedicine, 2016, 11, 69.	3.3	30
21	Non-Nucleoside Inhibitors of Human Adenosine Kinase: Synthesis, Molecular Modeling, and Biological Studies. Journal of Medicinal Chemistry, 2011, 54, 1401-1420.	2.9	27
22	Antiproliferative and proapoptotic activity of CLM3, a novel multiple tyrosine kinase inhibitor, alone and in combination with SN-38 on endothelial and cancer cells. Biochemical Pharmacology, 2011, 81, 1309-1316.	2.0	26
23	Benzofuroxane Derivatives as Multi-Effective Agents for the Treatment of Cardiovascular Diabetic Complications. Synthesis, Functional Evaluation, and Molecular Modeling Studies. Journal of Medicinal Chemistry, 2012, 55, 10523-10531.	2.9	24
24	Synthesis and Biological Evaluation of 2′â€Oxoâ€2,3â€dihydroâ€3′ <i>H</i> ― spiro[chromeneâ€4,5′â€{1,3]oxazolidin]â€3′yl]acetic Acid Derivatives as Aldose Reductase Inhibitors. Archi Der Pharmazie, 2011, 344, 372-385.	v2.1	21
25	CLM29, a multi-target pyrazolopyrimidine derivative, has anti-neoplastic activity in medullary thyroid cancer in vitro and in vivo. Molecular and Cellular Endocrinology, 2014, 393, 56-64.	1.6	21
26	Synthesis, biological evaluation and docking analysis of a new series of methylsulfonyl and sulfamoyl acetamides and ethyl acetates as potent COX-2 inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 810-820.	1.4	21
27	Cyclodextrin-based nanosponges for the targeted delivery of the anti-restenotic agent DB103: A novel opportunity for the local therapy of vessels wall subjected to percutaneous intervention. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 117, 276-285.	2.0	21
28	1,2-Benzisothiazole Derivatives Bearing 4-, 5-, or 6-Alkyl/arylcarboxamide Moieties Inhibit Carbonic Anhydrase Isoform IX (CAIX) and Cell Proliferation under Hypoxic Conditions. Journal of Medicinal Chemistry, 2016, 59, 6547-6552.	2.9	20
29	A novel 2,3-diphenyl-4H-pyrido[1,2-a]pyrimidin-4-one derivative inhibits endothelial cell dysfunction and smooth muscle cell proliferation/activation. European Journal of Medicinal Chemistry, 2014, 72, 102-109.	2.6	18
30	Structure-Based Optimization of Tyrosine Kinase Inhibitor CLM3 . Design, Synthesis, Functional Evaluation, and Molecular Modeling Studies Journal of Medicinal Chemistry, 2014, 57, 1225-1235.	2.9	18
31	Pyrazolopyrimidine Derivatives as Antineoplastic Agents: with a Special Focus on Thyroid Cancer. Mini-Reviews in Medicinal Chemistry, 2015, 16, 86-93.	1.1	17
32	Investigation of new 2-aryl substituted Benzothiopyrano[4,3-d]pyrimidines as kinase inhibitors targeting vascular endothelial growth factor receptor 2. European Journal of Medicinal Chemistry, 2015, 103, 29-43.	2.6	17
33	Copper atalyzed Recyclable Synthesis of (<i>Z</i>)â€3â€Alkylideneisoindolinones by Cycloisomerization of 2â€Alkynylbenzamides in Ionic Liquids. ChemistrySelect, 2017, 2, 894-899.	0.7	17
34	Synthetic mycomelanin thin films as emergent bio-inspired interfaces controlling the fate of embryonic stem cells. Journal of Materials Chemistry B, 2020, 8, 4412-4418.	2.9	17
35	Acid Derivatives of Pyrazolo[1,5-a]pyrimidine as Aldose Reductase Differential Inhibitors. Cell Chemical Biology, 2018, 25, 1414-1418.e3.	2.5	16
36	Synthetic analogues of flavonoids with improved activity against platelet activation and aggregation as novel prototypes of food supplements. Food Chemistry, 2015, 175, 494-499.	4.2	15

STEFANIA SARTINI

#	Article	IF	CITATIONS
37	N -(Aroyl)- N -(arylmethyloxy)-α-alanines: Selective inhibitors of aldose reductase. Bioorganic and Medicinal Chemistry, 2017, 25, 3068-3076.	1.4	13
38	Challenging clinically unresponsive medullary thyroid cancer: Discovery and pharmacological activity of novel RET inhibitors. European Journal of Medicinal Chemistry, 2018, 150, 491-505.	2.6	13
39	Synthesis and investigation of polyhydroxylated pyrrolidine derivatives as novel chemotypes showing dual activity as glucosidase and aldose reductase inhibitors. Bioorganic Chemistry, 2019, 92, 103298.	2.0	13
40	pH-Responsive Carboxymethylcellulose Nanoparticles for 68Ga-WBC Labeling in PET Imaging. Polymers, 2019, 11, 1615.	2.0	9
41	Combined Use of Scanning Electron Microscopy–Energy-Dispersive X-ray Spectroscopy and Fourier Transform Infrared Imaging Coupled with Principal Component Analysis in the Study of Ancient Egyptian Papyri. ACS Omega, 2019, 4, 22041-22047.	1.6	7
42	Anti-ischaemic activity of an antioxidant aldose reductase inhibitor on diabetic and non-diabetic rat hearts. Journal of Pharmacy and Pharmacology, 2010, 62, 107-113.	1.2	6
43	A Series of COXâ€2 Inhibitors Endowed with NOâ€Releasing Properties: Synthesis, Biological Evaluation, and Docking Analysis. ChemMedChem, 2016, 11, 1804-1811.	1.6	6
44	Oxy-imino saccharidic derivatives as a new structural class of aldose reductase inhibitors endowed with anti-oxidant activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1194-1205.	2.5	5
45	Dual Kit/Aur Inhibitors as Chemosensitizing Agents for the Treatment of Melanoma: Design, Synthesis, Docking Studies and Functional Investigation. Scientific Reports, 2019, 9, 9943.	1.6	4
46	Synthesis and Functional Evaluation of Novel Aldose Reductase Inhibitors Bearing a Spirobenzopyran Scaffold. Open Medicinal Chemistry Journal, 2017, 11, 9-23.	0.9	2