
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6066781/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flux determinations and physiological response in the exposure of red spruce to gaseous hydrogen peroxide, ozone, and sulfur dioxide. Tellus, Series B: Chemical and Physical Meteorology, 2022, 42, 183.	0.8	11
2	Coordinated resource allocation to plant growth–defense tradeoffs. New Phytologist, 2022, 233, 1051-1066.	3.5	63
3	Heterogeneous isotope effects decouple conifer leaf and branch sugar δ18O and δ13C. Oecologia, 2022, 198, 357-370.	0.9	2
4	Seasonal and diurnal trends in progressive isotope enrichment along needles in two pine species. Plant, Cell and Environment, 2021, 44, 143-155.	2.8	6
5	Leaf isoprene emission as a trait that mediates the growth-defense tradeoff in the face of climate stress. Oecologia, 2021, 197, 885-902.	0.9	45
6	Vapor pressure deficit helps explain biogenic volatile organic compound fluxes from the forest floor and canopy of a temperate deciduous forest. Oecologia, 2021, 197, 971-988.	0.9	4
7	High productivity in hybrid-poplar plantations without isoprene emission to the atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1596-1605.	3.3	31
8	The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 2020, 7, 225.	2.4	646
9	Some like it hot: the physiological ecology of C4 plant evolution. Oecologia, 2018, 187, 941-966.	0.9	75
10	Preface: Honoring the career of Professor James R. Ehleringer. Oecologia, 2018, 187, 875-878.	0.9	0
11	Disentangling seasonal and interannual legacies from inferred patterns of forest water and carbon cycling using treeâ€ring stable isotopes. Global Change Biology, 2018, 24, 5332-5347.	4.2	52
12	Isoprene research – 60Âyears later, the biology is still enigmatic. Plant, Cell and Environment, 2017, 40, 1671-1678.	2.8	76
13	Climate controls over ecosystem metabolism: insights from a fifteen-year inductive artificial neural network synthesis for a subalpine forest. Oecologia, 2017, 184, 25-41.	0.9	22
14	Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales. Global Change Biology, 2017, 23, 1240-1257.	4.2	102
15	Beyond greenness: Detecting temporal changes in photosynthetic capacity with hyperspectral reflectance data. PLoS ONE, 2017, 12, e0189539.	1.1	51
16	The Niwot Ridge Subalpine Forest US-NR1 AmeriFlux site – PartÂ1: Data acquisition and site record-keeping. Geoscientific Instrumentation, Methods and Data Systems, 2016, 5, 451-471.	0.6	12
17	Conifer Monoterpene Chemistry during an Outbreak Enhances Consumption and Immune Response of an Eruptive Folivore. Journal of Chemical Ecology, 2016, 42, 1281-1292.	0.9	9
18	Earlier snowmelt reduces atmospheric carbon uptake in midlatitude subalpine forests. Geophysical Research Letters, 2016, 43, 8160-8168.	1.5	48

#	Article	IF	CITATIONS
19	Latitudinal gradients in tree ring stable carbon and oxygen isotopes reveal differential climate influences of the North American Monsoon System. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1978-1991.	1.3	57
20	Interactions between temperature and intercellular CO ₂ concentration in controlling leaf isoprene emission rates. Plant, Cell and Environment, 2016, 39, 2404-2413.	2.8	18
21	Differential responses of carbon and water vapor fluxes to climate among evergreen needleleaf forests in the USA. Ecological Processes, 2016, 5, .	1.6	11
22	Differential controls by climate and physiology over the emission rates of biogenic volatile organic compounds from mature trees in a semi-arid pine forest. Oecologia, 2016, 180, 345-358.	0.9	14
23	Changes in soil biogeochemistry following disturbance by girdling and mountain pine beetles in subalpine forests. Oecologia, 2015, 177, 981-995.	0.9	18
24	Fluxes of energy, water, and carbon dioxide from mountain ecosystems at Niwot Ridge, Colorado. Plant Ecology and Diversity, 2015, 8, 663-676.	1.0	47
25	Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiology, 2014, 34, 796-818.	1.4	359
26	Snow Temperature Changes within a Seasonal Snowpack and Their Relationship to Turbulent Fluxes of Sensible and Latent Heat. Journal of Hydrometeorology, 2014, 15, 117-142.	0.7	38
27	The future of isoprene emission from leaves, canopies and landscapes. Plant, Cell and Environment, 2014, 37, 1727-1740.	2.8	70
28	Joint data assimilation of satellite reflectance and net ecosystem exchange data constrains ecosystem carbon fluxes at a high-elevation subalpine forest. Agricultural and Forest Meteorology, 2014, 195-196, 73-88.	1.9	19
29	Biotic and abiotic controls on biogenic volatile organic compound fluxes from a subalpine forest floor. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 547-556.	1.3	43
30	Why only some plants emit isoprene. Plant, Cell and Environment, 2013, 36, 503-516.	2.8	116
31	Persistent reduced ecosystem respiration after insect disturbance in high elevation forests. Ecology Letters, 2013, 16, 731-737.	3.0	90
32	Metabolic and Gene Expression Controls on the Production of Biogenic Volatile Organic Compounds. Tree Physiology, 2013, , 153-179.	0.9	17
33	Forecasting net ecosystem CO ₂ exchange in a subalpine forest using model data assimilation combined with simulated climate and weather generation. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 549-565.	1.3	11
34	Variation among different genotypes of hybrid poplar with regard to leaf volatile organic compound emissions. Ecological Applications, 2012, 22, 1865-1875.	1.8	28
35	Modeling the isoprene emission rate from leaves. New Phytologist, 2012, 195, 541-559.	3.5	111
36	Contribution of Various Carbon Sources Toward Isoprene Biosynthesis in Poplar Leaves Mediated by Altered Atmospheric CO2 Concentrations. PLoS ONE, 2012, 7, e32387.	1.1	47

RUSSELL K MONSON

#	Article	IF	CITATIONS
37	Terrestrial biosphere models need better representation of vegetation phenology: results from the <scp>N</scp> orth <scp>A</scp> merican <scp>C</scp> arbon <scp>P</scp> rogram <scp>S</scp> ite <scp>S</scp> ynthesis. Global Change Biology, 2012, 18, 566-584.	4.2	583
38	Withinâ€plant isoprene oxidation confirmed by direct emissions of oxidation products methyl vinyl ketone and methacrolein. Global Change Biology, 2012, 18, 973-984.	4.2	107
39	An interannual assessment of the relationship between the stable carbon isotopic composition of ecosystem respiration and climate in a high-elevation subalpine forest. Journal of Geophysical Research, 2011, 116, .	3.3	17
40	Seasonal pattern of regional carbon balance in the central Rocky Mountains from surface and airborne measurements. Journal of Geophysical Research, 2011, 116, .	3.3	33
41	Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations. Agricultural and Forest Meteorology, 2011, 151, 60-69.	1.9	157
42	Atmospheric Stability Effects on Wind Fields and Scalar Mixing Within and Just Above a Subalpine Forest in Sloping Terrain. Boundary-Layer Meteorology, 2011, 138, 231-262.	1.2	41
43	Enhanced isoprene-related tolerance of heat- and light-stressed photosynthesis at low, but not high, CO2 concentrations. Oecologia, 2011, 166, 273-282.	0.9	51
44	Observed increase in local cooling effect of deforestation at higher latitudes. Nature, 2011, 479, 384-387.	13.7	543
45	Tree species effects on ecosystem water-use efficiency in a high-elevation, subalpine forest. Oecologia, 2010, 162, 491-504.	0.9	49
46	Modeling wholeâ€ŧree carbon assimilation rate using observed transpiration rates and needle sugar carbon isotope ratios. New Phytologist, 2010, 185, 1000-1015.	3.5	58
47	Longer growing seasons lead to less carbon sequestration by a subalpine forest. Global Change Biology, 2010, 16, 771-783.	4.2	286
48	Perspectives on nextâ€generation technology for environmental sensor networks. Frontiers in Ecology and the Environment, 2010, 8, 193-200.	1.9	33
49	A modelâ€data intercomparison of CO ₂ exchange across North America: Results from the North American Carbon Program site synthesis. Journal of Geophysical Research, 2010, 115, .	3.3	247
50	Emissions of volatile organic compounds during the decomposition of plant litter. Journal of Geophysical Research, 2010, 115, .	3.3	115
51	Ecohydrological controls on snowmelt partitioning in mixedâ€conifer subâ€alpine forests. Ecohydrology, 2009, 2, 129-142.	1.1	137
52	The trade-off between growth rate and yield in microbial communities and the consequences for under-snow soil respiration in a high elevation coniferous forest. Biogeochemistry, 2009, 95, 23-35.	1.7	115
53	A comparison of water and carbon dioxide exchange at a windy alpine tundra and subalpine forest site near Niwot Ridge, Colorado. Biogeochemistry, 2009, 95, 61-76.	1.7	65
54	Response of isoprene emission to ambient CO ₂ changes and implications for global budgets. Global Change Biology, 2009, 15, 1127-1140.	4.2	158

#	Article	IF	CITATIONS
55	Leaf isoprene emission rate as a function of atmospheric CO ₂ concentration. Global Change Biology, 2009, 15, 1189-1200.	4.2	144
56	Latitudinal patterns of magnitude and interannual variability in net ecosystem exchange regulated by biological and environmental variables. Global Change Biology, 2009, 15, 2905-2920.	4.2	94
57	Controls over ozone deposition to a high elevation subalpine forest. Agricultural and Forest Meteorology, 2009, 149, 1447-1459.	1.9	40
58	Weather and climate controls over the seasonal carbon isotope dynamics of sugars from subalpine forest trees. Plant, Cell and Environment, 2009, 33, 35-47.	2.8	16
59	Canopy structure and atmospheric flows in relation to the δ13C of respired CO2 in a subalpine coniferous forest. Agricultural and Forest Meteorology, 2008, 148, 592-605.	1.9	41
60	Estimating transpiration and the sensitivity of carbon uptake to water availability in a subalpine forest using a simple ecosystem process model informed by measured net CO2 and H2O fluxes. Agricultural and Forest Meteorology, 2008, 148, 1467-1477.	1.9	74
61	Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data. Agricultural and Forest Meteorology, 2008, 148, 1827-1847.	1.9	221
62	THE CONTRIBUTION OF ADVECTIVE FLUXES TO NET ECOSYSTEM EXCHANGE IN A HIGHâ€ELEVATION, SUBALPINE FOREST. Ecological Applications, 2008, 18, 1379-1390.	E 1.8	81
63	The effect of elevated CO2, soil and atmospheric water deficit and seasonal phenology on leaf and ecosystem isoprene emission. Functional Plant Biology, 2007, 34, 774.	1.1	27
64	CO2 transport over complex terrain. Agricultural and Forest Meteorology, 2007, 145, 1-21.	1.9	93
65	Isoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1677-1695.	1.6	121
66	Estimating sublimation of intercepted and sub-canopy snow using eddy covariance systems. Hydrological Processes, 2007, 21, 1567-1575.	1.1	114
67	The relationship between isoprene emission rate and dark respiration rate in white poplar (Populus) Tj ETQq1 1 0.	784314 r 2.8	gBT/Overloc 79
68	Biogenic Hydrocarbon Chemistry within and Above a Mixed Deciduous Forest. Journal of Atmospheric Chemistry, 2007, 56, 165-185.	1.4	73
69	Coupling between carbon cycling and climate in a high-elevation, subalpine forest: a model-data fusion analysis. Oecologia, 2007, 151, 54-68.	0.9	105
70	The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem. Oecologia, 2007, 154, 327-338.	0.9	209
71	Oecologia enters a new era. Oecologia, 2007, 153, 207-208.	0.9	0
72	Nitrogen and carbon storage in alpine plants. Integrative and Comparative Biology, 2006, 46, 35-48.	0.9	40

#	Article	IF	CITATIONS
73	The contribution of beneath-snow soil respiration to total ecosystem respiration in a high-elevation, subalpine forest. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	1.9	84
74	On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. Journal of Geophysical Research, 2006, 111, .	3.3	267
75	Model-data synthesis of diurnal and seasonal CO2 fluxes at Niwot Ridge, Colorado. Global Change Biology, 2006, 12, 240-259.	4.2	92
76	Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration. Global Change Biology, 2006, 12, 205-216.	4.2	267
77	Winter forest soil respiration controlled by climate and microbial community composition. Nature, 2006, 439, 711-714.	13.7	468
78	A multiyear evaluation of a Dynamic Global Vegetation Model at three AmeriFlux forest sites: Vegetation structure, phenology, soil temperature, and CO2 and H2O vapor exchange. Ecological Modelling, 2006, 196, 1-31.	1.2	161
79	The interacting effects of elevated atmospheric CO2 concentration, drought and leaf-to-air vapour pressure deficit on ecosystem isoprene fluxes. Oecologia, 2005, 146, 120-129.	0.9	43
80	Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia, 2005, 146, 130-147.	0.9	169
81	Midday values of gross CO2 flux and light use efficiency during satellite overpasses can be used to directly estimate eight-day mean flux. Agricultural and Forest Meteorology, 2005, 131, 1-12.	1.9	114
82	Modeling and measuring the nocturnal drainage flow in a high-elevation, subalpine forest with complex terrain. Journal of Geophysical Research, 2005, 110, .	3.3	74
83	Changing the way we think about global change research: scaling up in experimental ecosystem science. Global Change Biology, 2004, 10, 393-407.	4.2	126
84	A nonparametric method for separating photosynthesis and respiration components in CO2flux measurements. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	21
85	Airflows and turbulent flux measurements in mountainous terrain. Agricultural and Forest Meteorology, 2004, 125, 187-205.	1.9	54
86	Gap-filling missing data in eddy covariance measurements using multiple imputation (MI) for annual estimations. Agricultural and Forest Meteorology, 2004, 121, 93-111.	1.9	146
87	Isoprenoid Metabolism. , 2004, , 625-628.		0
88	The many faces of plant carbon relations: forging an ecophysiological identity in the age of human influence. New Phytologist, 2003, 157, 167-170.	3.5	5
89	Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature, 2003, 421, 256-259.	13.7	312
90	The uptake of gaseous organic nitrogen by leaves: A significant global nitrogen transfer process. Geophysical Research Letters, 2003, 30, n/a-n/a.	1.5	74

#	Article	IF	CITATIONS
91	Spatial and temporal controls of soil respiration rate in a high-elevation, subalpine forest. Soil Biology and Biochemistry, 2003, 35, 525-534.	4.2	158
92	Airflows and turbulent flux measurements in mountainous terrain. Agricultural and Forest Meteorology, 2003, 119, 1-21.	1.9	142
93	Carbon sequestration studied in western U.S. mountains. Eos, 2002, 83, 445.	0.1	101
94	Volatile organic compound emissions from terrestrial ecosystems: A primary biological control over atmospheric chemistry. Israel Journal of Chemistry, 2002, 42, 29-42.	1.0	31
95	Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology, 2002, 113, 53-74.	1.9	606
96	Phase and amplitude of ecosystem carbon release and uptake potentials as derived from FLUXNET measurements. Agricultural and Forest Meteorology, 2002, 113, 75-95.	1.9	145
97	Supply and demand processes as controls over needle monoterpene synthesis and concentration in Douglas fir [Pseudotsuga menziesii (Mirb.) Franco]. Oecologia, 2002, 132, 382-391.	0.9	44
98	Biospheric Trace Gas Fluxes and Their Control Over Tropospheric Chemistry. Annual Review of Ecology, Evolution, and Systematics, 2001, 32, 547-576.	6.7	124
99	Leaf uptake of nitrogen dioxide (NO2) in a tropical wet forest: implications for tropospheric chemistry. Oecologia, 2001, 127, 214-221.	0.9	98
100	Nightâ€ŧime respiration rate and leaf carbohydrate concentrations are not coupled in two alpine perennial species. New Phytologist, 2001, 149, 419-430.	3.5	19
101	Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2. Global Change Biology, 2001, 7, 127-145.	4.2	178
102	Biochemistry and physiology of foliar isoprene production. Trends in Plant Science, 2000, 5, 477-481.	4.3	104
103	Carbon availability and temperature control the post-snowmelt decline in alpine soil microbial biomass. Soil Biology and Biochemistry, 2000, 32, 441-448.	4.2	227
104	HERBIVORE-INDUCED MONOTERPENE EMISSIONS FROM CONIFEROUS FORESTS: POTENTIAL IMPACT ON LOCAL TROPOSPHERIC CHEMISTRY. , 1999, 9, 1147-1159.		35
105	Scaling Isoprene Fluxes from Leaves to Canopies: Test Cases over a Boreal Aspen and a Mixed Species Temperate Forest. Journal of Applied Meteorology and Climatology, 1999, 38, 885-898.	1.7	49
106	Thermotolerance of Leaf Discs from Four Isoprene-Emitting Species Is Not Enhanced by Exposure to Exogenous Isoprene1. Plant Physiology, 1999, 120, 821-826.	2.3	63
107	Ectomycorrhizal transfer of amino acid-nitrogen to the alpine sedgeKobresia myosuroides. New Phytologist, 1999, 142, 163-167.	3.5	36
108	Monoterpene emission from coniferous trees in response to elevated CO2 concentration and climate warming. Global Change Biology, 1999, 5, 252-267.	4.2	83

RUSSELL K MONSON

#	Article	IF	CITATIONS
109	Modelling changes in VOC emission in response to climate change in the continental United States. Global Change Biology, 1999, 5, 791-806.	4.2	76
110	Ecological and evolutionary aspects of isoprene emission from plants. Oecologia, 1999, 118, 109-123.	0.9	214
111	LINKS BETWEEN MICROBIAL POPULATION DYNAMICS AND NITROGEN AVAILABILITY IN AN ALPINE ECOSYSTEM. Ecology, 1999, 80, 1623-1631.	1.5	310
112	SOIL AMINO ACID UTILIZATION AMONG SPECIES OF THE CYPERACEAE: PLANT AND SOIL PROCESSES. Ecology, 1999, 80, 2408-2419.	1.5	178
113	SEASONAL PARTITIONING OF NITROGEN BY PLANTS AND SOIL MICROORGANISMS IN AN ALPINE ECOSYSTEM. Ecology, 1999, 80, 1883-1891.	1.5	191
114	LINKS BETWEEN MICROBIAL POPULATION DYNAMICS AND NITROGEN AVAILABILITY IN AN ALPINE ECOSYSTEM. , 1999, 80, 1623.		205
115	HERBIVORE-INDUCED MONOTERPENE EMISSIONS FROM CONIFEROUS FORESTS: POTENTIAL IMPACT ON LOCAL TROPOSPHERIC CHEMISTRY. , 1999, 9, 1147.		1
116	Plant-microbe competition for soil amino acids in the alpine tundra: effects of freeze-thaw and dry-rewet events. Oecologia, 1998, 113, 406-414.	0.9	472
117	Patterns of induced and constitutive monoterpene production in conifer needles in relation to insect herbivory. Oecologia, 1998, 114, 531-540.	0.9	169
118	Controls over monoterpene emissions from boreal forest conifers. Tree Physiology, 1997, 17, 563-569.	1.4	72
119	Non-mycorrhizal uptake of amino acids by roots of the alpine sedge Kobresia myosuroides: implications for the alpine nitrogen cycle. Oecologia, 1996, 108, 488-494.	0.9	152
120	Ecological Controls over Monoterpene Emissions from Douglas-Fir (Pseudotsuga Menziesii). Ecology, 1995, 76, 2640-2647.	1.5	112
121	Biological aspects of constructing volatile organic compound emission inventories. Atmospheric Environment, 1995, 29, 2989-3002.	1.9	128
122	Sexual differences in gas exchange and response to environmental stress in dioecious <i>Silene latifolia</i> (Caryophyllaceae). American Journal of Botany, 1994, 81, 166-174.	0.8	50
123	Sexual differences in gas exchange and response to environmental stress in dioecious Silene latifolia (Caryophyllaceae). , 1994, 81, 166.		70
124	Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses. Journal of Geophysical Research, 1993, 98, 12609-12617.	3.3	1,432
125	Isoprene Emission Rate and Intercellular Isoprene Concentration as Influenced by Stomatal Distribution and Conductance. Plant Physiology, 1992, 100, 987-992.	2.3	154
126	Relationships among Isoprene Emission Rate, Photosynthesis, and Isoprene Synthase Activity as Influenced by Temperature. Plant Physiology, 1992, 98, 1175-1180.	2.3	272

RUSSELL K MONSON

#	Article	IF	CITATIONS
127	Adaptive significance of nitrogen storage in Bistorta bistortoides, an alpine herb. Oecologia, 1992, 92, 578-585.	0.9	58
128	Isoprene and monoterpene emission rate variability: Observations with eucalyptus and emission rate algorithm development. Journal of Geophysical Research, 1991, 96, 10799-10808.	3.3	496
129	Physiological Reality in Relation to Ecosystem- and Global-Level Estimates of Isoprene Emission. , 1991, , 185-207.		27
130	PHOTOSYNTHETIC CHARACTERISTICS OF C ₃ ₄ INTERMEDIATE FLAVERIA FLORIDANA (ASTERACEAE) IN NATURAL HABITATS: EVIDENCE OF ADVANTAGES TO C ₃ ₄ PHOTOSYNTHESIS AT HIGH LEAF TEMPERATURES. American Journal of Botany, 1991, 78, 795-800.	0.8	24
131	PHOTOSYNTHETIC CHARACTERISTICS OF C3-C4 INTERMEDIATE FLAVERIA FLORIDANA (ASTERACEAE) IN NATURAL HABITATS: EVIDENCE OF ADVANTAGES TO C3-C4 PHOTOSYNTHESIS AT HIGH LEAF TEMPERATURES. , 1991, 78, 795.		13
132	A branch chamber system and techniques for simultaneous pollutant exposure experiments and gaseous flux determinations. Tellus, Series B: Chemical and Physical Meteorology, 1990, 42, 170-182.	0.8	7
133	EXPERIMENTAL STUDIES OF PONDEROSA PINE. III. DIFFERENCES IN PHOTOSYNTHESIS, STOMATAL CONDUCTANCE, AND WATERâ€USE EFFICIENCY BETWEEN TWO GENETIC LINES. American Journal of Botany, 1989, 76, 1041-1047.	0.8	41
134	Isoprene Emission from Aspen Leaves. Plant Physiology, 1989, 90, 267-274.	2.3	350
135	The relative contributions of reduced photorespiration, and improved water-and nitrogen-use efficiencies, to the advantages of C3â°'C4 intermediate photosynthesis in Flaveria. Oecologia, 1989, 80, 215-221.	0.9	49
136	Experimental Studies of Ponderosa Pine. III. Differences in Photosynthesis, Stomatal Conductance, and Water-Use Efficiency Between Two Genetic Lines. American Journal of Botany, 1989, 76, 1041.	0.8	14
137	Carbon Gain by Plants in Natural Environments. BioScience, 1987, 37, 21-29.	2.2	135
138	Field measurements of photosynthesis, water-use efficiency, and growth inAgropyron smithii (C3) andBouteloua gracilis (C4) in the Colorado shortgrass steppe. Oecologia, 1986, 68, 400-409.	0.9	56
139	Midday depression in net photosynthesis and stomatal conductance in Yucca glauca. Oecologia, 1985, 67, 380-387.	0.9	66
140	A field study of photosynthetic temperature acclimation in Carex eleocharis Bailey Plant, Cell and Environment, 1984, 7, 301-308.	2.8	11
141	C3- C4Intermediate Photosynthesis in Plants. BioScience, 1984, 34, 563-574.	2.2	154
142	Photosynthetic Characteristics of C3-C4 Intermediate Flaveria Species. Plant Physiology, 1983, 71, 944-948.	2.3	143
143	Temperature Dependence of Photosynthesis in Agropyron smithii Rydb Plant Physiology, 1982, 69, 921-928.	2.3	124
144	Seasonal Water Potential Components of Sonoran Desert Plants. Ecology, 1982, 63, 113-123.	1.5	84