Cedric G Geoffroy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6066637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nature Neuroscience, 2012, 15, 703-712.	14.8	392
2	Assessing Spinal Axon Regeneration and Sprouting in Nogo-, MAG-, and OMgp-Deficient Mice. Neuron, 2010, 66, 663-670.	8.1	281
3	Myelin-associated inhibitors in axonal growth after CNS injury. Current Opinion in Neurobiology, 2014, 27, 31-38.	4.2	153
4	Evidence for an Age-Dependent Decline in Axon Regeneration in the Adult Mammalian Central Nervous System. Cell Reports, 2016, 15, 238-246.	6.4	117
5	Effects of PTEN and Nogo Codeletion on Corticospinal Axon Sprouting and Regeneration in Mice. Journal of Neuroscience, 2015, 35, 6413-6428.	3.6	95
6	The age factor in axonal repair after spinal cord injury: A focus on neuron-intrinsic mechanisms. Neuroscience Letters, 2017, 652, 41-49.	2.1	42
7	Leucine Zipper-Bearing Kinase Is a Critical Regulator of Astrocyte Reactivity in the Adult Mammalian CNS. Cell Reports, 2018, 22, 3587-3597.	6.4	37
8	Leucine Zipper-bearing Kinase promotes axon growth in mammalian central nervous system neurons. Scientific Reports, 2016, 6, 31482.	3.3	32
9	The Influence of Neuron-Extrinsic Factors and Aging on Injury Progression and Axonal Repair in the Central Nervous System. Frontiers in Cell and Developmental Biology, 2020, 8, 190.	3.7	30
10	Engineering of Dominant Active Basic Helix-Loop-Helix Proteins That Are Resistant to Negative Regulation by Postnatal Central Nervous System Antineurogenic Cues. Stem Cells, 2009, 27, 847-856.	3.2	29
11	Blockade of IL-17 signaling reverses alcohol-induced liver injury and excessive alcohol drinking in mice. JCI Insight, 2020, 5, .	5.0	29
12	Adult rat myelin enhances axonal outgrowth from neural stem cells. Science Translational Medicine, 2018, 10, .	12.4	28
13	Generation of an <i>EphA4</i> conditional allele in mice. Genesis, 2010, 48, 101-105.	1.6	19
14	Oligodendrocytic but not neuronal Nogo restricts corticospinal axon sprouting after CNS injury. Experimental Neurology, 2018, 309, 32-43.	4.1	15
15	A Cre-lox approach for transient transgene expression in neural precursor cells and long-term tracking of their progeny in vitro and in vivo. BMC Developmental Biology, 2007, 7, 45.	2.1	9
16	A novel Oct4/Pou5f1-like non-coding RNA controls neural maturation and mediates developmental effects of ethanol. Neurotoxicology and Teratology, 2021, 83, 106943.	2.4	8
17	Age-Dependent Decline in Neuron Growth Potential and Mitochondria Functions in Cortical Neurons. Cells, 2021, 10, 1625.	4.1	6
18	Osteopenia in a Mouse Model of Spinal Cord Injury: Effects of Age, Sex and Motor Function. Biology, 2022, 11, 189.	2.8	3

#	Article	IF	CITATIONS
19	Are mitochondria the key to reduce the age-dependent decline in axon growth after spinal cord injury?. Neural Regeneration Research, 2021, 16, 1444.	3.0	Ο
20	Evaluation of the Cardiometabolic Disorders after Spinal Cord Injury in Mice. Biology, 2022, 11, 495.	2.8	0