
Luigi Casella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6066587/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuromelanins in brain aging and Parkinson's disease: synthesis, structure, neuroinflammatory, and neurodegenerative role. IUBMB Life, 2023, 75, 55-65.	1.5	26
2	Waterâ€6oluble Melanin–Protein–Fe/Cu Conjugates Derived from Norepinephrine as Reliable Models for Neuromelanin of Human Brain <i>Locus Coeruleus</i> . Angewandte Chemie - International Edition, 2022, 61, .	7.2	2
3	A Cu-bis(imidazole) Substrate Intermediate Is the Catalytically Competent Center for Catechol Oxidase Activity of Copper Amyloid-β. Inorganic Chemistry, 2021, 60, 606-613.	1.9	6
4	Interaction of Neuromelanin with Xenobiotics and Consequences for Neurodegeneration; Promising Experimental Models. Antioxidants, 2021, 10, 824.	2.2	20
5	Oxidase Reactivity of Cull Bound to N-Truncated Aβ Peptides Promoted by Dopamine. International Journal of Molecular Sciences, 2021, 22, 5190.	1.8	3
6	Metallotexaphyrins as MRI-Active Catalytic Antioxidants for Neurodegenerative Disease: A Study on Alzheimer's Disease. CheM, 2020, 6, 703-724.	5.8	17
7	Membrane Binding Strongly Affecting the Dopamine Reactivity Induced by Copper Prion and Copper/Amyloid-β (Aβ) Peptides. A Ternary Copper/Aβ/Prion Peptide Complex Stabilized and Solubilized in Sodium Dodecyl Sulfate Micelles. Inorganic Chemistry, 2020, 59, 900-912.	1.9	14
8	Binding and Reactivity of Copper to R ₁ and R ₃ Fragments of tau Protein. Inorganic Chemistry, 2020, 59, 274-286.	1.9	33
9	Condition-Dependent Coordination and Peroxidase Activity of Hemin-AÎ ² Complexes. Molecules, 2020, 25, 5044.	1.7	5
10	Interaction between Hemin and Prion Peptides: Binding, Oxidative Reactivity and Aggregation. International Journal of Molecular Sciences, 2020, 21, 7553.	1.8	7
11	Neuronal Proteins as Targets of 3-Hydroxykynurenine: Implications in Neurodegenerative Diseases. ACS Chemical Neuroscience, 2019, 10, 3731-3739.	1.7	8
12	Aminomethylene-Phosphonate Analogue as a Cu(II) Chelator: Characterization and Application as an Inhibitor of Oxidation Induced by the Cu(II)–Prion Peptide Complex. Inorganic Chemistry, 2019, 58, 8995-9003.	1.9	1
13	A Stereoselective Tyrosinase Model Compound Derived from an <i>m</i> -Xylyl- <scp>l</scp> -histidine Ligand. Inorganic Chemistry, 2019, 58, 7335-7344.	1.9	10
14	Dopamin, oxidativer Stress und Proteinâ€Chinonmodifikationen bei Parkinson und anderen neurodegenerativen Erkrankungen. Angewandte Chemie, 2019, 131, 6580-6596.	1.6	7
15	Dopamine, Oxidative Stress and Protein–Quinone Modifications in Parkinson's and Other Neurodegenerative Diseases. Angewandte Chemie - International Edition, 2019, 58, 6512-6527.	7.2	160
16	Neuromelanin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for Parkinson's disease. Npj Parkinson's Disease, 2018, 4, 11.	2.5	169
17	Cross-talk between endogenous H 2 S and NO accounts for vascular protective activity of the metal-nonoate Zn(PipNONO)Cl. Biochemical Pharmacology, 2018, 152, 143-152.	2.0	21
18	Building biomimetic model compounds of dinuclear and trinuclear copper clusters for stereoselective oxidations. Inorganica Chimica Acta, 2018, 481, 47-55.	1.2	12

#	Article	IF	CITATIONS
19	Neuromelanin organelles are specialized autolysosomes that accumulate undegraded proteins and lipids in aging human brain and are likely involved in Parkinson's disease. Npj Parkinson's Disease, 2018, 4, 17.	2.5	101
20	The metal-nonoate Ni(SalPipNONO) inhibits <i>in vitro</i> tumor growth, invasiveness and angiogenesis. Oncotarget, 2018, 9, 13353-13365.	0.8	17
21	Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease. Progress in Neurobiology, 2017, 155, 96-119.	2.8	490
22	A dinuclear biomimetic Cu complex derived from <scp>l</scp> -histidine: synthesis and stereoselective oxidations. Dalton Transactions, 2017, 46, 4018-4029.	1.6	11
23	Synthesis, Structure Characterization, and Evaluation in Microglia Cultures of Neuromelanin Analogues Suitable for Modeling Parkinson's Disease. ACS Chemical Neuroscience, 2017, 8, 501-512.	1.7	40
24	Prion Peptides Are Extremely Sensitive to Copper Induced Oxidative Stress. Inorganic Chemistry, 2017, 56, 11317-11325.	1.9	15
25	Anti-hypertensive property of a nickel-piperazine/NO donor in spontaneously hypertensive rats. Pharmacological Research, 2016, 107, 352-359.	3.1	17
26	Coordination and redox properties of copper interaction with α-synuclein. Journal of Inorganic Biochemistry, 2016, 163, 292-300.	1.5	43
27	Copperâ€Aβ Peptides and Oxidation of Catecholic Substrates: Reactivity and Endogenous Peptide Damage. Chemistry - A European Journal, 2016, 22, 16964-16973.	1.7	18
28	Copper(I) Forms a Redox-Stable 1:2 Complex with α-Synuclein N-Terminal Peptide in a Membrane-Like Environment. Inorganic Chemistry, 2016, 55, 6100-6106.	1.9	23
29	Superoxide Dismutase (SOD)-mimetic M40403 Is Protective in Cell and Fly Models of Paraquat Toxicity. Journal of Biological Chemistry, 2016, 291, 9257-9267.	1.6	56
30	Copper(I/II), α/βâ€ 5 ynuclein and Amyloidâ€Î²: Menage à Trois?. ChemBioChem, 2015, 16, 2319-2328.	1.3	38
31	Differences in the Binding of Copper(I) to \hat{I}_{\pm} - and \hat{I}_{\pm} -Synuclein. Inorganic Chemistry, 2015, 54, 265-272.	1.9	32
32	Neuronal effects of a nickel-piperazine/NO donor complex in rodents. Pharmacological Research, 2015, 99, 162-173.	3.1	5
33	Remote His50 Acts as a Coordination Switch in the High-Affinity N-Terminal Centered Copper(II) Site of \hat{I}_{\pm} -Synuclein. Inorganic Chemistry, 2015, 54, 4744-4751.	1.9	35
34	Synthesis, Characterization, and Stereoselective Oxidations of the Dinuclear Copper(II) Complex Derived from a Chiral Diamino-m-xylenetetra(benzimidazole) Ligand. European Journal of Inorganic Chemistry, 2015, 2015, 3493-3500.	1.0	11
35	Reactivity of copper–α-synuclein peptide complexes relevant to Parkinson's disease. Metallomics, 2015, 7, 1091-1102.	1.0	39
36	Interactions of metal ions with \hat{l}_\pm synuclein and amyloid \hat{l}^2 peptides. , 2014, , .		0

3

#	Article	IF	CITATIONS
37	Protective Effects of Novel Metal-Nonoates on the Cellular Components of the Vascular System. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 500-509.	1.3	20
38	Neuromelanin of the Human Substantia Nigra: An Update. Neurotoxicity Research, 2014, 25, 13-23.	1.3	191
39	Heme Binding Induces Dimerization and Nitration of Truncated βâ€Amyloid Peptide Aβ16 Under Oxidative Stress. Angewandte Chemie - International Edition, 2013, 52, 8041-8044.	7.2	50
40	Copper–β-amyloid peptides exhibit neither monooxygenase nor superoxide dismutase activities. Chemical Communications, 2013, 49, 4027.	2.2	14
41	Neuroglobin Modification by Reactive Quinone Species. Chemical Research in Toxicology, 2013, 26, 1821-1831.	1.7	23
42	Nitrative Stress Causes Nitration, Oxidation, and Subunit Cross Linking in Human Hemoglobin. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1384-1394.	0.6	2
43	Copper(I)-α-Synuclein Interaction: Structural Description of Two Independent and Competing Metal Binding Sites. Inorganic Chemistry, 2013, 52, 1358-1367.	1.9	58
44	Synthesis and structural characterization of soluble neuromelanin analogs provides important clues to its biosynthesis. Journal of Biological Inorganic Chemistry, 2013, 18, 81-93.	1.1	27
45	Neuromelanins of Human Brain Have Soluble and Insoluble Components with Dolichols Attached to the Melanic Structure. PLoS ONE, 2012, 7, e48490.	1.1	65
46	Investigation of Streptomyces antibioticus tyrosinase reactivity toward chlorophenols. Archives of Biochemistry and Biophysics, 2011, 505, 67-74.	1.4	37
47	A new chiral, poly-imidazole N8-ligand and the related di- and tri-copper(ii) complexes: synthesis, theoretical modelling, spectroscopic properties, and biomimetic stereoselective oxidations. Dalton Transactions, 2011, 40, 5436.	1.6	24
48	Selective Copper-Mediated Halogenation of Aromatic Rings Under Mild Conditions. European Journal of Inorganic Chemistry, 2011, 2011, 4360-4368.	1.0	9
49	Endogenous Arene Hydroxylation Promoted by Copper(I) Cluster Helicates. Chemistry - A European Journal, 2010, 16, 14175-14180.	1.7	20
50	O ₂ â€Activation and Selective Phenolate <i>ortho</i> â€Hydroxylation by an Unsymmetric Dicopper μâ€♣ ¹ <i>:</i> η ¹ â€₽eroxido Complex. Angewandte Chemie - International Edition, 2010, 49, 2406-2409.	7.2	104
51	Potential Applications of Peroxidases in the Fine Chemical Industries. , 2010, , 111-153.		8
52	Catalytic Sulfoxidation by Dinuclear Copper Complexes. Chemistry - A European Journal, 2009, 15, 12932-12936.	1.7	28
53	Catalytic peroxidation of nitrogen monoxide and peroxynitrite by globins. IUBMB Life, 2009, 61, 62-73.	1.5	28
54	Biomimetic Modelling of Copper Enzymes: Synthesis, Characterization, EPR Analysis and Enantioselective Catalytic Oxidations by a New Chiral Trinuclear Copper(II) Complex. European Journal of Inorganic Chemistry, 2009, 2009, 554-566.	1.0	27

#	Article	IF	CITATIONS
55	Trapping tyrosinase key active intermediate under turnover. Dalton Transactions, 2009, , 6468.	1.6	24
56	Protein selfâ€modification by hemeâ€generated reactive species. IUBMB Life, 2008, 60, 41-56.	1.5	9
57	Tyrosinaseâ€Like Reactivity in a Cu ^{III} ₂ (μâ€O) ₂ Species. Chemistry - A European Journal, 2008, 14, 3535-3538.	1.7	73
58	Myoglobin Modification by Enzymeâ€Generated Dopamine Reactive Species. Chemistry - A European Journal, 2008, 14, 8661-8673.	1.7	27
59	Nitric Oxide Releasing Metal–Diazeniumdiolate Complexes Strongly Induce Vasorelaxation and Endothelial Cell Proliferation. ChemMedChem, 2008, 3, 1039-1047.	1.6	15
60	Ligand Binding, Conformational and Spectroscopic Properties, and Biomimetic Monooxygenase Activity by the Trinuclear Copper–PHI Complex Derived from <scp>L</scp> â€Histidine. European Journal of Inorganic Chemistry, 2008, 2008, 2081-2089.	1.0	13
61	Neuromelanin can protect against ironâ€mediated oxidative damage in system modeling iron overload of brain aging and Parkinson's disease. Journal of Neurochemistry, 2008, 106, 1866-1875.	2.1	174
62	Adsorption and Conformational Change of Myoglobin on Biomimetic Hydroxyapatite Nanocrystals Functionalized with Alendronate. Langmuir, 2008, 24, 4924-4930.	1.6	78
63	Electron Transfer Complex between Nitrous Oxide Reductase and Cytochrome <i>c</i> ₅₅₂ from <i>Pseudomonas nautica</i> : Kinetic, Nuclear Magnetic Resonance, and Docking Studies. Biochemistry, 2008, 47, 10852-10862.	1.2	42
64	Tyrosinase Catalyzes Asymmetric Sulfoxidation. Biochemistry, 2008, 47, 3493-3498.	1.2	19
65	New melanic pigments in the human brain that accumulate in aging and block environmental toxic metals. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17567-17572.	3.3	213
66	Reactivity and endogenous modification by nitrite and hydrogen peroxide: does human neuroglobin act only as a scavenger?. Biochemical Journal, 2007, 407, 89-99.	1.7	51
67	Modular syntheses of multidentate ligands with variable N-donors: applications to tri- and tetracopper(i) complexes. Dalton Transactions, 2007, , 3035.	1.6	28
68	A new dinuclear heme-copper complex derived from functionalized protoporphyrin IX. Dalton Transactions, 2007, , 2197.	1.6	16
69	Tyrosinase-Generated Quinones Induce Covalent Modification, Unfolding, and Aggregation of Human Holo-Myoglobin. Biomacromolecules, 2007, 8, 3214-3223.	2.6	3
70	Supramolecular Helical Architectures Dictated by Folded and Extended Conformations of the Amino Acid in Ternary Cull/Diamine/Racemic Amino Acid Complexes. European Journal of Inorganic Chemistry, 2007, 2007, 1654-1660.	1.0	12
71	Redox reactivity of the heme Fe3+/Fe2+ couple in native myoglobins and mutants with peroxidase-like activity. Journal of Biological Inorganic Chemistry, 2007, 12, 951-958.	1.1	27
72	Heme-peptide complexes as peroxidase models. Comptes Rendus Chimie, 2007, 10, 380-391.	0.2	18

Luigi Casella

#	Article	IF	CITATIONS
73	Biomimetic Oxidations by Dinuclear and Trinuclear Copper Complexes. Advances in Inorganic Chemistry, 2006, , 185-233.	0.4	65
74	Reactive nitrogen species generated by heme proteins: Mechanism of formation and targets. Coordination Chemistry Reviews, 2006, 250, 1286-1293.	9.5	28
75	Enzymatic and spectroscopic studies on the activation or inhibition effects by substituted phenolic compounds in the oxidation of aryldiamines and catechols catalyzed by Rhus vernicifera laccase. Journal of Inorganic Biochemistry, 2006, 100, 2127-2139.	1.5	10
76	Easy Oxidation and Nitration of Human Myoglobin by Nitrite and Hydrogen Peroxide. Chemistry - A European Journal, 2006, 12, 749-757.	1.7	37
77	Mechanistic Insight into the Activity of Tyrosinase from Variable-Temperature Studies in an Aqueous/Organic Solvent. Chemistry - A European Journal, 2006, 12, 2504-2514.	1.7	31
78	Kinetics and Thermodynamics of Halide and Nitrite Oxidation by Mammalian Heme Peroxidases. European Journal of Inorganic Chemistry, 2006, 2006, 3801-3811.	1.0	96
79	METALLOENZYMES AND CHEMICAL BIOMIMETICS. European Journal of Inorganic Chemistry, 2006, 2006, 3545-3546.	1.0	6
80	Synthesis and characterization of new chiral octadentate nitrogen ligands and related copper(II) complexes as catalysts for stereoselective oxidation of catechols. Journal of Molecular Catalysis A, 2005, 235, 271-284.	4.8	24
81	Catalytic activity, stability, unfolding, and degradation pathways of engineered and reconstituted myoglobins. Journal of Biological Inorganic Chemistry, 2005, 10, 11-24.	1.1	20
82	Hydroxylation of Phenolic Compounds by a Peroxodicopper(II) Complex:  Further Insight into the Mechanism of Tyrosinase. Journal of the American Chemical Society, 2005, 127, 18031-18036.	6.6	113
83	Engineering peroxidase activity in myoglobin: the haem cavity structure and peroxide activation in the T67R/S92D mutant and its derivative reconstituted with protohaemin-l-histidine. Biochemical Journal, 2004, 377, 717-724.	1.7	38
84	Mechanistic insight into the peroxidase catalyzed nitration of tyrosine derivatives by nitrite and hydrogen peroxide. FEBS Journal, 2004, 271, 895-906.	0.2	57
85	Peroxidase catalyzed nitration of tryptophan derivatives. FEBS Journal, 2004, 271, 2841-2852.	0.2	39
86	Mechanistic insight into the catechol oxidase activity by a biomimetic dinuclear copper complex. Journal of Biological Inorganic Chemistry, 2004, 9, 903-913.	1.1	70
87	New aspects of the reactivity of tyrosinase. Micron, 2004, 35, 141-142.	1.1	11
88	Engineering and Prostheticâ€Group Modification of Myoglobin: Peroxidase Activity, Chemical Stability and Unfolding Properties. European Journal of Inorganic Chemistry, 2004, 2004, 2203-2213.	1.0	18
89	Modified Microperoxidases Exhibit Different Reactivity Towards Phenolic Substrates. ChemBioChem, 2004, 5, 1692-1699.	1.3	18
90	Engineering and Prosthetic-Group Modification of Myoglobin: Peroxidase Activity, Chemical Stability and Unfolding Properties ChemInform, 2004, 35, no.	0.1	0

#	Article	IF	CITATIONS
91	Metmyoglobin-Catalyzed Exogenous and Endogenous Tyrosine Nitration by Nitrite and Hydrogen Peroxide. Chemistry - A European Journal, 2004, 10, 2281-2290.	1.7	30
92	Nitrite increases the enantioselectivity of sulfoxidation catalyzed by myoglobin derivatives in the presence of hydrogen peroxide. Tetrahedron, 2004, 60, 8153-8160.	1.0	8
93	Models for biological trinuclear copper clusters. Characterization and enantioselective catalytic oxidation of catechols by the copper(ii) complexes of a chiral ligand derived from (S)-(â^')-1,1â€2-binaphthyl-2,2â€2-diamine. Dalton Transactions, 2004, , 2192-2201.	1.6	44
94	Probing the location of the substrate binding site of ascorbate oxidase near type 1 copper: an investigation through spectroscopic, inhibition and docking studies. International Journal of Biochemistry and Cell Biology, 2004, 36, 881-892.	1.2	21
95	Synthesis and Conformational Studies of a Chiral Octadentate Ligand Derived from (R)-1,1′-Binaphthyl-2,2′-diamine and its Dinuclear Zinc(II) and Nickel(II) Complexes. European Journal of Inorganic Chemistry, 2003, 2003, 3934-3944.	1.0	10
96	Structure and Reactivity Studies on Dinuclear Copper Complexes of the Ligand α,αâ€2-Bis{bis[1-(1â€2-methyl-2â€2-benzimidazolyl)methyl]amino}-m-xylene. European Journal of Inorganic Chemistry, 2003, 2003, 1197-1205.	1.0	19
97	Selectivity in the peroxidase catalyzed oxidation of phenolic sulfides. Journal of Molecular Catalysis A, 2003, 204-205, 391-400.	4.8	9
98	Catecholate Adducts of Binuclear Copper Complexes Modelling the Type 3 Copper Active Site— Spectroscopic Characterization and Relevance to the Tyrosinase Reaction. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2003, 629, 2258-2265.	0.6	35
99	Enantio-differentiating catalytic oxidation by a biomimetic trinuclear copper complex containing l-histidine residues. Chemical Communications, 2003, , 2186.	2.2	31
100	A Double Arene Hydroxylation Mediated by Dicopper(II)â^'Hydroperoxide Species. Journal of the American Chemical Society, 2003, 125, 4185-4198.	6.6	54
101	Tyrosinase-catalyzed Oxidation of Fluorophenols. Journal of Biological Chemistry, 2002, 277, 44606-44612.	1.6	71
102	Formation of reactive nitrogen species at biologic heme centers: a potential mechanism of nitric oxide-dependent toxicity Environmental Health Perspectives, 2002, 110, 709-711.	2.8	29
103	Characterization and Peroxidase Activity of a Myoglobin Mutant Containing a Distal Arginine. ChemBioChem, 2002, 3, 226-233.	1.3	48
104	Enzymatic properties of human hemalbumin. BBA - Proteins and Proteomics, 2001, 1547, 302-312.	2.1	76
105	Reversible Dioxygen Binding and Phenol Oxygenation in a Tyrosinase Model System. Chemistry - A European Journal, 2000, 6, 519-522.	1.7	132
106	Covalently modified microperoxidases as heme-peptide models for peroxidases. Journal of Inorganic Biochemistry, 2000, 79, 31-40.	1.5	39
107	Properties and Reactivity of Myoglobin Reconstituted with Chemically Modified Protohemin Complexesâ€. Biochemistry, 2000, 39, 9571-9582.	1.2	59
108	Functional mimics of copper enzymes. Synthesis and stereochemical properties of the copper(II) complexes of a trinucleating ligand derived from l-histidine. Tetrahedron: Asymmetry, 1999, 10, 281-295.	1.8	27

#	Article	IF	CITATIONS
109	Inhibitor binding studies on ascorbate oxidase. Coordination Chemistry Reviews, 1999, 185-186, 619-628.	9.5	11
110	Mechanistic, Structural, and Spectroscopic Studies on the Catecholase Activity of a Dinuclear Copper Complex by Dioxygen. Inorganic Chemistry, 1999, 38, 5359-5369.	1.9	142
111	Synthesis, characterization and stereoselective catalytic oxidations of chelated deuterohaemin-glycyl-L-histidine complexes. Inorganica Chimica Acta, 1998, 273, 339-345.	1.2	25
112	Tyrosinase Models. Synthesis, Structure, Catechol Oxidase Activity, and Phenol Monooxygenase Activity of a Dinuclear Copper Complex Derived from a Triamino Pentabenzimidazole Ligand. Inorganic Chemistry, 1998, 37, 553-562.	1.9	288
113	Copper monooxygenase models. Aromatic hydroxylation by a dinuclear copper(I) complex containing methionine sulfur ligands. Journal of the Chemical Society Dalton Transactions, 1997, , 4789-4794.	1.1	22
114	Inhibition of Ascorbate Oxidase by Phenolic Compounds. Enzymatic and Spectroscopic Studiesâ€. Biochemistry, 1997, 36, 4852-4859.	1.2	22
115	Tyrosinase-catecholic substrates in Vitro model: kinetic studies on the o-quinone/o-semiquinone radical formation. Journal of Inorganic Biochemistry, 1997, 68, 61-69.	1.5	29
116	Oxidation of Phenolic Compounds by Lactoperoxidase. Evidence for the Presence of a Low-Potential Compound II during Catalytic Turnoverâ€. Biochemistry, 1997, 36, 1918-1926.	1.2	76
117	Axial Imidazole Distortion Effects on the Catalytic and Binding Properties of Chelated Deuterohemin Complexes. Inorganic Chemistry, 1996, 35, 439-444.	1.9	37
118	Synthesis, Structure, and Reactivity of Model Complexes of Copper Nitrite Reductase. Inorganic Chemistry, 1996, 35, 1101-1113.	1.9	96
119	Functional Modeling of Tyrosinase. Mechanism of Phenolortho-Hydroxylation by Dinuclear Copper Complexes. Inorganic Chemistry, 1996, 35, 7516-7525.	1.9	98
120	The Oxidation of Hemocyanin. Kinetics, Reaction Mechanism and Characterization of Met-Hemocyanin Product. FEBS Journal, 1995, 232, 98-105.	0.2	9
121	The Chloroperoxidase-Catalyzed Oxidation of Phenols. Mechanism, Selectivity, and Characterization of Enzyme-Substrate Complexes. Biochemistry, 1994, 33, 6377-6386.	1.2	76
122	Enantioselective epoxidation of styrene derivatives by chloroperoxidase catalysis. Tetrahedron: Asymmetry, 1993, 4, 1325-1330.	1.8	81
123	Hemocyanin and tyrosinase models. Synthesis, azide binding, and electrochemistry of dinuclear copper(II) complexes with poly(benzimidazole) ligands modeling the met forms of the proteins. Inorganic Chemistry, 1993, 32, 2056-2067.	1.9	82
124	Mechanism of enantioselective oxygenation of sulfides catalyzed by chloroperoxidase and horseradish peroxidase. Spectral studies and characterization of enzyme-substrate complexes. Biochemistry, 1992, 31, 9451-9459.	1.2	62
125	Chloroperoxidase and hydrogen peroxide: An efficient system for enzymatic enantioselective sulfoxidations Tetrahedron: Asymmetry, 1992, 3, 95-106.	1.8	165
126	Spectroscopic and binding studies of azide-copper(II) model complexes. Inorganic Chemistry, 1991, 30, 221-227.	1.9	38

Luigi Casella

#	Article	IF	CITATIONS
127	Synthesis, characterization and stereochemistry of condensation products between (1R)-3-hydroxymethylenebornane-2-thione and diamines and their metal complexes. Journal of the Chemical Society Dalton Transactions, 1991, , 2527.	1.1	6
128	Spectroscopic and binding studies of azide to type-2-copper-depleted ascorbate oxidase from zucchini. Biology of Metals, 1991, 4, 81-89.	1.1	9
129	Synthesis and reactivity of a family of copper monooxygenase model systems. Journal of the American Chemical Society, 1988, 110, 4221-4227.	6.6	95
130	Coordination modes of histidine. 8. Copper(II) complexes of 2-(trifluoromethyl)-L-histidine in aqueous solution. Inorganic Chemistry, 1985, 24, 84-88.	1.9	4
131	Spectral study of ascorbate oxidase. Inorganica Chimica Acta, 1984, 91, 189-194.	1.2	8
132	Synthetic approach to the type 1 active site of copper proteins. Copper(I), copper(II), and zinc(II) complexes with N2SS* ligand donor sets. Inorganic Chemistry, 1984, 23, 2781-2787.	1.9	49
133	Coordination modes of histidine. Journal of Inorganic Biochemistry, 1983, 18, 19-31.	1.5	61
134	Coordination modes of histidine. 5. Copper(II) complexes of L-N.taumethylhistidine and L-N.alpha.,N.alphadimethylhistidine in aqueous solution. Inorganic Chemistry, 1983, 22, 242-249.	1.9	23
135	Coordination modes of histidine. 3. Stereochemistry of copper(II) complexes related to pyridoxal catalysis. Journal of the American Chemical Society, 1982, 104, 2386-2396.	6.6	61
136	Coordination modes of histidine. 2. Stereochemistry of the reaction between histidine derivatives and pyridoxal analogs conformational properties of zinc(II) complexes of histidine Schiff bases. Journal of the American Chemical Society, 1981, 103, 6338-6347.	6.6	112
137	Synthesis, characterization, and reactivity of copper(I) and copper(II) complexes of N,N'-bis(3-(2-thenylideneimino)propyl)piperazine (tipp) and N,N'-bis(3-(2-thenylamino)propyl)piperazine (tapp). Crystal structure of [Cu(tapp)][ClO4]2. Inorganic Chemistry, 1981, 20, 2438-2448.	1.9	33
138	Waterâ€Soluble Melanin–Protein–Fe/Cu Conjugates Derived from Norepinephrine as Reliable Models for Neuromelanin of Human Brain <i>Locus Coeruleus</i> . Angewandte Chemie, 0, , .	1.6	1