
Laura Mazzanti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6066392/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Variants of SOS2 are a rare cause of Noonan syndrome with particular predisposition for lymphatic complications. European Journal of Human Genetics, 2021, 29, 51-60.	1.4	17
2	Chondrodysplasia and growth failure in children after early hematopoietic stem cell transplantation for nonâ€oncologic disorders. American Journal of Medical Genetics, Part A, 2021, 185, 517-527.	0.7	3
3	Growth in Children With Noonan Syndrome and Effects of Growth Hormone Treatment on Adult Height. Frontiers in Endocrinology, 2021, 12, 761171.	1.5	6
4	Enhanced MAPK1 Function Causes a Neurodevelopmental Disorder within the RASopathy Clinical Spectrum. American Journal of Human Genetics, 2020, 107, 499-513.	2.6	48
5	Challenges in the clinical interpretation of small de novo copy number variants in neurodevelopmental disorders. Gene, 2019, 706, 162-171.	1.0	9
6	The Discovery of a LEMD2-Associated Nuclear Envelopathy with Early Progeroid Appearance Suggests Advanced Applications for Al-Driven Facial Phenotyping. American Journal of Human Genetics, 2019, 104, 749-757.	2.6	41
7	<i>HDAC8</i> Loss of Function and <i>SHOX</i> Haploinsufficiency: Two Independent Genetic Defects Responsible for a Complex Phenotype. Cytogenetic and Genome Research, 2019, 157, 135-140.	0.6	3
8	Estradiol matrix patches for pubertal induction: stability of cut pieces at different temperatures. Endocrine Connections, 2019, 8, 360-366.	0.8	12
9	Characteristics of a nationwide cohort of patients presenting with isolated hypogonadotropic hypogonadism (IHH). European Journal of Endocrinology, 2018, 178, 23-32.	1.9	84
10	Generation of the Rubinstein-Taybi syndrome type 2 patient-derived induced pluripotent stem cell line (IAli001-A) carrying the EP300 exon 23 stop mutation c.3829Aâ€>â€T, p.(Lys1277*). Stem Cell Research, 20 30, 175-179.	9180.3	4
11	The influence of CH treatment on glucose homeostasis in girls with Turner Syndrome: a 7 years study. Journal of Clinical Endocrinology and Metabolism, 2017, 102, jc.2016-3179.	1.8	13
12	Barber-Say Syndrome and Ablepharon-Macrostomia Syndrome: A Patient's View. Molecular Syndromology, 2017, 8, 172-178.	0.3	6
13	Stories of experiences of care for growth hormone deficiency: the CRESCERE project. Future Science OA, 2016, 2, FSO82.	0.9	17
14	From Whole Gene Deletion to Point Mutations of <i>EP300</i> Positive Rubinstein-Taybi Patients: New Insights into the Mutational Spectrum and Peculiar Clinical Hallmarks. Human Mutation, 2016, 37, 175-183.	1.1	36
15	Screening of <i>PRKAR1A</i> and <i>PDE4D</i> in a Large Italian Series of Patients Clinically Diagnosed With Albright Hereditary Osteodystrophy and/or Pseudohypoparathyroidism. Journal of Bone and Mineral Research, 2016, 31, 1215-1224.	3.1	47
16	Barber–Say syndrome and Ablepharon–Macrostomia syndrome: An overview. American Journal of Medical Genetics, Part A, 2016, 170, 1989-2001.	0.7	26
17	The Evolution of Thyroid Function after Presenting with Hashimoto Thyroiditis Is Different between Initially Euthyroid Girls with and Those without Turner Syndrome. Hormone Research in Paediatrics, 2016, 86, 403-409.	0.8	14
18	The Influence of Growth Hormone Treatment on Glucose Homeostasis in GrowthHormone-Deficient Children: A Six-Year Follow-Up Study, Hormone Research in Paediatrics, 2016, 86, 196-200.	0.8	15

LAURA MAZZANTI

#	Article	IF	CITATIONS
19	Neuropsychiatric phenotype in a child with pseudohypoparathyroidism. Journal of Pediatric Neurosciences, 2016, 11, 267.	0.2	6
20	Response to longâ€ŧerm growth hormone therapy in patients affected by RASopathies and growth hormone deficiency: Patterns of growth, puberty and final height data. American Journal of Medical Genetics, Part A, 2015, 167, 2786-2794.	0.7	32
21	The association with Turner syndrome significantly affects the course of Hashimoto's thyroiditis in children, irrespective of karyotype. Endocrine, 2015, 50, 777-782.	1.1	33
22	Loss-of-function variants of SETD5 cause intellectual disability and the core phenotype of microdeletion 3p25.3 syndrome. European Journal of Human Genetics, 2015, 23, 753-760.	1.4	73
23	Recurrent Mutations in the Basic Domain of TWIST2 Cause Ablepharon Macrostomia and Barber-Say Syndromes. American Journal of Human Genetics, 2015, 97, 99-110.	2.6	61
24	Quality of Life and Psychological Adjustment of Women Living with 46,XY Differences of Sex Development. Journal of Sexual Medicine, 2015, 12, 1440-1449.	0.3	44
25	Epidemiology, Presentation and Long-Term Evolution of Graves' Disease in Children, Adolescents and Young Adults with Turner Syndrome. Hormone Research in Paediatrics, 2014, 81, 245-250.	0.8	31
26	A mutation in PAK3 with a dual molecular effect deregulates the RAS/MAPK pathway and drives an X-linked syndromic phenotype. Human Molecular Genetics, 2014, 23, 3607-3617.	1.4	33
27	A syndromic form of Pierre Robin sequence is caused by 5q23 deletions encompassing FBN2 and PHAX. European Journal of Medical Genetics, 2014, 57, 587-595.	0.7	18
28	Molecular Analysis, Pathogenic Mechanisms, and Readthrough Therapy on a Large Cohort of <scp>K</scp> abuki Syndrome Patients. Human Mutation, 2014, 35, 841-850.	1.1	87
29	Epilepsy in Mowat–Wilson syndrome: Delineation of the electroclinical phenotype. American Journal of Medical Genetics, Part A, 2013, 161, 273-284.	0.7	42
30	Loss of function of the E3 ubiquitin-protein ligase UBE3B causes Kaufman oculocerebrofacial syndrome. Journal of Medical Genetics, 2013, 50, 493-499.	1.5	40
31	Adult height in girls with Turner syndrome treated from before 6 years of age with a fixed per kilogram GH dose. European Journal of Endocrinology, 2013, 169, 439-443.	1.9	16
32	GH Therapy and first final height data in Noonanâ€like syndrome with loose anagen hair (Mazzanti) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
33	Impaired GH Secretion in Patients with SHOX Deficiency and Efficacy of Recombinant Human GH Therapy. Hormone Research in Paediatrics, 2012, 78, 279-287.	0.8	15
34	The empowerment of translational research: lessons from laminopathies. Orphanet Journal of Rare Diseases, 2012, 7, 37.	1.2	7
35	Transcriptional hallmarks of noonan syndrome and noonanâ€like syndrome with loose anagen hair. Human Mutation, 2012, 33, 703-709.	1.1	12

Hearing Growth Defects in Turner Syndrome. , 2012, , 1437-1444.

0

LAURA MAZZANTI

#	Article	IF	CITATIONS
37	Turner syndrome strategies to improve care outcomescardiac evaluation using new imaging techniques. Pediatric Endocrinology Reviews, 2012, 9 Suppl 2, 701-9.	1.2	2
38	SOS1 mutations in Noonan syndrome: molecular spectrum, structural insights on pathogenic effects, and genotype-phenotype correlations. Human Mutation, 2011, 32, 760-772.	1.1	97
39	Heterozygous Germline Mutations in the CBL Tumor-Suppressor Gene Cause a Noonan Syndrome-like Phenotype. American Journal of Human Genetics, 2010, 87, 250-257.	2.6	221
40	A restricted spectrum of NRAS mutations causes Noonan syndrome. Nature Genetics, 2010, 42, 27-29.	9.4	271
41	Correlations of phenotype and genotype in relation to morphologic remodelling of the aortic root in patients with Turner's syndrome. Cardiology in the Young, 2009, 19, 264.	0.4	11
42	Germline <i>BRAF</i> mutations in Noonan, LEOPARD, and cardiofaciocutaneous syndromes: Molecular diversity and associated phenotypic spectrum. Human Mutation, 2009, 30, 695-702.	1.1	251
43	Mutation of SHOC2 promotes aberrant protein N-myristoylation and causes Noonan-like syndrome with loose anagen hair. Nature Genetics, 2009, 41, 1022-1026.	9.4	358
44	Developmental Syndromes: Growth Hormone Deficiency and Treatment. Endocrine Development, 2009, 14, 114-134.	1.3	14
45	On the nosology and pathogenesis of Wolf–Hirschhorn syndrome: Genotype–phenotype correlation analysis of 80 patients and literature review. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2008, 148C, 257-269.	0.7	143
46	Hearing loss in Turner syndrome: Results of a multicentric study. Journal of Endocrinological Investigation, 2008, 31, 779-783.	1.8	44
47	A de novo nonsense mutation ofPAX6 gene in a patient with aniridia, ataxia, and mental retardation. American Journal of Medical Genetics, Part A, 2007, 143A, 1802-1805.	0.7	28
48	Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nature Genetics, 2007, 39, 1007-1012.	9.4	624
49	Wolf–Hirschhorn syndrome-associated chromosome changes are not mediated by olfactory receptor gene clusters nor by inversion polymorphism on 4p16. Human Genetics, 2007, 122, 423-430.	1.8	12
50	Gonadoblastoma in Turner syndrome and Y-chromosome-derived material. American Journal of Medical Genetics, Part A, 2005, 135A, 150-154.	0.7	87
51	Turner Syndrome, Insulin Sensitivity and Growth Hormone Treatment. Hormone Research in Paediatrics, 2005, 64, 51-57.	0.8	23
52	Molecular and Clinical Analyses of Greig Cephalopolysyndactyly and Pallister-Hall Syndromes: Robust Phenotype Prediction from the Type and Position of GLI3 Mutations. American Journal of Human Genetics, 2005, 76, 609-622.	2.6	248
53	Early treatment with GH alone in Turner syndrome: prepubertal catch-up growth and waning effect. European Journal of Endocrinology, 2004, 151, 567-572.	1.9	21
54	Noonan-like syndrome with loose anagen hair: A new syndrome?. American Journal of Medical Genetics Part A, 2003, 118A, 279-286.	2.4	72

LAURA MAZZANTI

#	Article	IF	CITATIONS
55	Prevalence and Clinical Picture of Celiac Disease in Turner Syndrome. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 5495-5498.	1.8	161
56	Final Height of Patients with Turner's Syndrome Treated with Growth Hormone (GH): Indications for GH Therapy Alone at High Doses and Late Estrogen Therapy. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 4510-4515.	1.8	35
57	Involvement of the skull base and vault in chronic idiopathic hyperphosphatasia. Pediatric Radiology, 1999, 29, 16-18.	1.1	5
58	Helicobacter pylori and Type 1 Diabetes Mellitus in Children. Journal of Pediatric Gastroenterology and Nutrition, 1999, 28, 307-309.	0.9	32
59	Congenital heart disease in patients with Turner's syndrome. Journal of Pediatrics, 1998, 133, 688-692.	0.9	233
60	Pelvic ultrasonography in patients with Turner syndrome: Age-related findings in different karyotypes. Journal of Pediatrics, 1997, 131, 135-140.	0.9	45
61	Effects of sport (football) on growth auxological, anthropometric and hormonal aspects. European Journal of Applied Physiology and Occupational Physiology, 1990, 61, 149-158.	1.2	42
62	GH, ACTH, TSH, LH, and FSH Reserve in Prepubertal Girls with Congenital Adrenal Hyperplasia. Journal of Clinical Endocrinology and Metabolism, 1976, 43, 1146-1152.	1.8	14