
Onuralp Karatum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6066057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-Performance White Light-Emitting Diodes over 150 lm/W Using Near-Unity-Emitting Quantum Dots in a Liquid Matrix. ACS Photonics, 2022, 9, 1304-1314.	6.6	18
2	Optoelectronic Neural Interfaces Based on Quantum Dots. ACS Applied Materials & Interfaces, 2022, 14, 20468-20490.	8.0	21
3	Electrical Stimulation of Neurons with Quantum Dots via Near-Infrared Light. ACS Nano, 2022, 16, 8233-8243.	14.6	21
4	RuO ₂ Supercapacitor Enables Flexible, Safe, and Efficient Optoelectronic Neural Interface. Advanced Functional Materials, 2022, 32, .	14.9	15
5	Nanoengineering InP Quantum Dot-Based Photoactive Biointerfaces for Optical Control of Neurons. Frontiers in Neuroscience, 2021, 15, 652608.	2.8	13
6	Quantum dot and electron acceptor nano-heterojunction for photo-induced capacitive charge-transfer. Scientific Reports, 2021, 11, 2460.	3.3	19
7	Plasmon-Coupled Photocapacitor Neuromodulators. ACS Applied Materials & Interfaces, 2020, 12, 35940-35949.	8.0	18
8	Bidirectional optical neuromodulation using capacitive charge-transfer. Biomedical Optics Express, 2020, 11, 6068.	2.9	7
9	Biocompatible Quantum Funnels for Neural Photostimulation. Nano Letters, 2019, 19, 5975-5981.	9.1	22
10	Light-Emitting Devices Based on Type-II InP/ZnO Quantum Dots. ACS Photonics, 2019, 6, 939-946.	6.6	35
11	Ecofriendly and Efficient Luminescent Solar Concentrators Based on Fluorescent Proteins. ACS Applied Materials & Interfaces, 2019, 11, 8710-8716.	8.0	45