Anders Lindroth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6065973/publications.pdf

Version: 2024-02-01

186 19,744 64 133
papers citations h-index g-index

211 211 211 15982 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science, 2010, 329, 834-838.	6.0	2,056
2	Respiration as the main determinant of carbon balance in European forests. Nature, 2000, 404, 861-865.	13.7	1,438
3	Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research, 2011, 116, .	3.3	933
4	Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 2008, 451, 49-52.	13.7	930
5	The human footprint in the carbon cycle of temperate and boreal forests. Nature, 2007, 447, 849-851.	13.7	868
6	CO ₂ balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 2007, 13, 2509-2537.	4.2	863
7	Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology, 2001, 7, 269-278.	4.2	843
8	The likely impact of elevated [CO 2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytologist, 2007, 173, 463-480.	3 . 5	579
9	Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricultural and Forest Meteorology, 2007, 143, 123-145.	1.9	509
10	Comparison of different chamber techniques for measuring soil CO2 efflux. Agricultural and Forest Meteorology, 2004, 123, 159-176.	1.9	420
11	Longâ€ŧerm measurements of boreal forest carbon balance reveal large temperature sensitivity. Global Change Biology, 1998, 4, 443-450.	4.2	327
12	Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire – a significant sink after accounting for all Câ€fluxes. Global Change Biology, 2008, 14, 2317-2332.	4.2	299
13	Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Global Change Biology, 2003, 9, 1410-1426.	4.2	273
14	Assimilation exceeds respiration sensitivity to drought: A FLUXNET synthesis. Global Change Biology, 2010, 16, 657-670.	4.2	238
15	Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites. Geophysical Research Letters, 2007, 34, .	1.5	223
16	Past, Present, and Future Controls on Levels of Persistent Organic Pollutants in the Global Environment. Environmental Science & Environment. Environmental Science & Environment. Environmental Science & Environment. Environmental Science & Environment.	4.6	214
17	Storms can cause Europeâ€wide reduction in forest carbon sink. Global Change Biology, 2009, 15, 346-355.	4.2	178
18	Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resources Research, 2002, 38, 30-1-30-11.	1.7	169

#	Article	IF	Citations
19	Transpiration response to soil moisture in pine and spruce trees in Sweden. Agricultural and Forest Meteorology, 2002, 112, 67-85.	1.9	154
20	Variability in exchange of CO ₂ across 12 northern peatland and tundra sites. Global Change Biology, 2010, 16, 2436-2448.	4.2	144
21	Climate control of terrestrial carbon exchange across biomes and continents. Environmental Research Letters, 2010, 5, 034007.	2.2	137
22	Comparison of horizontal and vertical advective CO2 fluxes at three forest sites. Agricultural and Forest Meteorology, 2008, 148, 12-24.	1.9	136
23	Assessing parameter variability in a photosynthesis model within and between plant functional types using global Fluxnet eddy covariance data. Agricultural and Forest Meteorology, 2011, 151, 22-38.	1.9	135
24	Developing an empirical model of stand GPP with the LUE approach: analysis of eddy covariance data at five contrasting conifer sites in Europe. Global Change Biology, 2008, 14, 92-108.	4.2	132
25	Flux-profile relationships over a boreal forest â€" roughness sublayer corrections. Agricultural and Forest Meteorology, 1999, 98-99, 645-658.	1.9	128
26	Direct advection measurements do not help to solve the night-time CO2 closure problem: Evidence from three different forests. Agricultural and Forest Meteorology, 2010, 150, 655-664.	1.9	126
27	Assessment of regional willow coppice yield in Sweden on basis of water availability. Forest Ecology and Management, 1999, 121, 57-65.	1.4	122
28	Heat storage in forest biomass improves energy balance closure. Biogeosciences, 2010, 7, 301-313.	1.3	120
29	CO2 exchange at the floor of a boreal forest. Agricultural and Forest Meteorology, 2000, 101, 1-14.	1.9	119
30	Evaporation components of a boreal forest: variations during the growing season. Journal of Hydrology, 1997, 197, 70-87.	2.3	114
31	Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytologist, 2012, 194, 775-783.	3.5	111
32	Eddy-correlation system for long-term monitoring of fluxes of heat, water vapour and CO2. Global Change Biology, 1996, 2, 297-307.	4.2	109
33	Errors in Net Radiometry: Comparison and Evaluation of Six Radiometer Designs. Journal of Atmospheric and Oceanic Technology, 1992, 9, 762-783.	0.5	106
34	Increasing contribution of peatlands to boreal evapotranspiration in a warming climate. Nature Climate Change, 2020, 10, 555-560.	8.1	106
35	Individual variation of sap-flow rate in large pine and spruce trees and stand transpiration: a pilot study at the central NOPEX site. Journal of Hydrology, 1995, 168, 17-27.	2.3	101
36	A 12-year record reveals pre-growing season temperature and water table level threshold effects on the net carbon dioxide exchange in a boreal fen. Environmental Research Letters, 2014, 9, 055006.	2.2	100

#	Article	IF	CITATIONS
37	Pools and fluxes of carbon in three Norway spruce ecosystems along a climatic gradient in Sweden. Biogeochemistry, 2008, 89, 7-25.	1.7	99
38	Interpreting canopy development and physiology using a European phenology camera network at flux sites. Biogeosciences, 2015, 12, 5995-6015.	1.3	98
39	Energy exchange and water budget partitioning in a boreal minerogenic mire. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1-13.	1.3	94
40	Comparison between tower and aircraft-based eddy covariance fluxes in five European regions. Agricultural and Forest Meteorology, 2004, 127, 1-16.	1.9	91
41	Effects of drought conditions on the carbon dioxide dynamics in a temperate peatland. Environmental Research Letters, 2012, 7, 045704.	2.2	91
42	Landâ€atmosphere exchange of methane from soil thawing to soil freezing in a highâ€∢scp>Arctic wet tundra ecosystem. Global Change Biology, 2012, 18, 1928-1940.	4.2	89
43	The effect of water availability on stand-level productivity, transpiration, water use efficiency and radiation use efficiency of field-grown willow clones. Biomass and Bioenergy, 2007, 31, 460-468.	2.9	88
44	Canopy Conductance of Coniferous Forests Related to Climate. Water Resources Research, 1985, 21, 297-304.	1.7	86
45	Evaluation of heat balance and heat dissipation methods for sapflow measurements in pine and spruce. Annals of Forest Science, 2001, 58, 625-638.	0.8	86
46	Annual CO ₂ exchange between a nutrientâ€poor, minerotrophic, boreal mire and the atmosphere. Journal of Geophysical Research, 2008, 113, .	3.3	86
47	Net primary production and light use efficiency in a mixed coniferous forest in Sweden. Plant, Cell and Environment, 2005, 28, 412-423.	2.8	85
48	Early snowmelt significantly enhances boreal springtime carbon uptake. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11081-11086.	3.3	84
49	Methane and carbon dioxide fluxes over a lake: comparison between eddy covariance, floating chambers and boundary layer method. Biogeosciences, 2018, 15, 429-445.	1.3	81
50	Canopy transpiration from a boreal forest in Sweden during a dry year. Agricultural and Forest Meteorology, 1997, 86, 157-167.	1.9	78
51	Continuous long-term measurements of soil-plant-atmosphere variables at a forest site. Agricultural and Forest Meteorology, 1999, 98-99, 53-73.	1.9	78
52	Thinning effects on pine-spruce forest transpiration in central Sweden. Forest Ecology and Management, 2008, 255, 2312-2323.	1.4	77
53	Gas transfer rate and CO $<$ sub $>$ 2 $<$ /sub $>$ flux between an unproductive lake and the atmosphere in northern Sweden. Journal of Geophysical Research, 2008, 113, .	3.3	77
54	A catchment-scale carbon and greenhouse gas budget of a subarctic landscape. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1643-1656.	1.6	76

#	Article	IF	Citations
55	Use of Depuration Compounds in Passive Air Samplers: Results from Active Sampling-Supported Field Deployment, Potential Uses, and Recommendations. Environmental Science & Env	4.6	76
56	Standardisation of chamber technique for CO2, N2O and CH4 fluxes measurements from terrestrial ecosystems. International Agrophysics, 2018, 32, 569-587.	0.7	76
57	Water-use efficiency of willow: Variation with season, humidity and biomass allocation. Journal of Hydrology, 1994, 156, 1-19.	2.3	7 5
58	Simulating evaporation from short-rotation forest: variations within and between seasons. Journal of Hydrology, 1994, 156, 21-45.	2.3	75
59	Environmental controls on the CO ₂ exchange in north European mires. Tellus, Series B: Chemical and Physical Meteorology, 2022, 59, 812.	0.8	75
60	Leaf area index is the principal scaling parameter for both gross photosynthesis and ecosystem respiration of Northern deciduous and coniferous forests. Tellus, Series B: Chemical and Physical Meteorology, 2008, 60, 129-142.	0.8	75
61	Turbulent exchange above a pine forest, I: Fluxes and gradients. Boundary-Layer Meteorology, 1989, 49, 197-217.	1.2	74
62	Seasonal variation of boreal forest surface conductance and evaporation. Agricultural and Forest Meteorology, 1999, 98-99, 563-578.	1.9	73
63	The effects of water availability on transpiration, water potential and growth of Picea abies during a growing season. Journal of Hydrology, 1994, 155, 57-71.	2.3	72
64	A new mass conservation approach to the study of CO $<$ sub $>$ 2 $<$ /sub $>$ advection in an alpine forest. Journal of Geophysical Research, 2009, 114, .	3.3	69
65	Water use efficiency of short-rotation Salix viminalis at leaf, tree and stand scales. Tree Physiology, 1996, 16, 257-262.	1.4	68
66	Effects of N and P fertilization on the greenhouse gas exchange in two northern peatlands with contrasting N deposition rates. Biogeosciences, 2009, 6, 2135-2144.	1.3	68
67	Flow Distortion by a Solent Sonic Anemometer: Wind Tunnel Calibration and Its Assessment for Flux Measurements over Forest and Field. Journal of Atmospheric and Oceanic Technology, 1994, 11, 1529-1542.	0.5	67
68	Quantifying the effect of forest age in annual net forest carbon balance. Environmental Research Letters, 2018, 13, 124018.	2.2	67
69	Comparison of floating chamber and eddy covariance measurements of lake greenhouse gas fluxes. Biogeosciences, 2014, 11, 4225-4233.	1.3	66
70	Standardisation of eddy-covariance flux measurements of methane and nitrous oxide. International Agrophysics, 2018, 32, 517-549.	0.7	66
71	The Full Annual Carbon Balance of Boreal Forests Is Highly Sensitive to Precipitation. Environmental Science and Technology Letters, 2014, 1, 315-319.	3.9	65
72	Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth System Science Data, 2021, 13, 2607-2649.	3.7	65

#	Article	IF	CITATIONS
73	Vertical variability and effect of stability on turbulence characteristics down to the floor of a pine forest. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 919-936.	0.8	64
74	Annual CO2 balance of a temperate bog. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 804-811.	0.8	62
75	Estimating LAI in deciduous forest stands. Agricultural and Forest Meteorology, 2005, 129, 27-37.	1.9	60
76	Aerodynamic and canopy resistance of short-rotation forest in relation to leaf area index and climate. Boundary-Layer Meteorology, 1993, 66, 265-279.	1.2	59
77	ICOS eddy covariance flux-station site setup: a review. International Agrophysics, 2018, 32, 471-494.	0.7	59
78	Stand transpiration and sapflow density in relation to weather, soil moisture and stand characteristics. Basic and Applied Ecology, 2002, 3, 229-243.	1.2	58
79	Available energy and energy balance closure at four coniferous forest sites across Europe. Theoretical and Applied Climatology, 2009, 98, 397-412.	1.3	58
80	Carbon dioxide exchange in Norway spruce at the shoot, tree and ecosystem scale. Tree Physiology, 2001, 21, 969-976.	1.4	57
81	Assessment of transpiration estimates for Picea abies trees during a growing season. Trees - Structure and Function, 1992, 6, 121-127.	0.9	56
82	Water flux in boreal forest during two hydrologically contrasting years; species specific regulation of canopy conductance and transpiration. Annales Des Sciences Foresti Tres, 1998, 55, 47-61.	1.1	56
83	Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe's terrestrial ecosystems: a review. International Agrophysics, 2018, 32, 439-455.	0.7	55
84	Measurement of net ecosystem exchange, productivity and respiration in three spruce forests in Sweden shows unexpectedly large soil carbon losses. Biogeochemistry, 2008, 89, 43-60.	1.7	54
85	Bayesian calibration of a model describing carbon, water and heat fluxes for a Swedish boreal forest stand. Ecological Modelling, 2008, 213, 331-344.	1.2	54
86	Biophysical controls on CO ₂ fluxes of three Northern forests based on long-term eddy covariance data. Tellus, Series B: Chemical and Physical Meteorology, 2008, 60, 143-152.	0.8	53
87	Soil surface CO2 efflux measurements in Norway spruce forests: Comparison between four different sites across Europe â€" from boreal to alpine forest. Geoderma, 2013, 192, 295-303.	2.3	53
88	Latent heat exchange in the boreal and arctic biomes. Global Change Biology, 2014, 20, 3439-3456.	4.2	52
89	Towards operational remote sensing of forest carbon balance across Northern Europe. Biogeosciences, 2008, 5, 817-832.	1.3	51
90	Water use by intensively cultivated willow using estimated stomatal parameter values. Hydrological Processes, 1989, 3, 51-63.	1.1	50

#	Article	IF	CITATIONS
91	Regional-scale CO 2 fluxes over central Sweden by a boundary layer budget method. Agricultural and Forest Meteorology, 1999, 98-99, 169-180.	1.9	50
92	Sap flow by the heat balance method applied to small size Salix trees in a short-rotation forest. Biomass and Bioenergy, 1995, 8, 7-15.	2.9	49
93	Up-scaling of water use efficiency from leaf to canopy as based on leaf gas exchange relationships and the modeled in-canopy light distribution. Agricultural and Forest Meteorology, 2012, 152, 201-211.	1.9	49
94	Seasonal and diurnal variation of energy budget components in coniferous forests. Journal of Hydrology, 1985, 82, 1-15.	2.3	48
95	Test of a modified Shuttleworth–Wallace estimate of boreal forest evaporation. Agricultural and Forest Meteorology, 1999, 98-99, 605-619.	1.9	47
96	Estimating net primary production for Scandinavian forests using data from Terra/MODIS. Advances in Space Research, 2007, 39, 125-130.	1.2	46
97	Analysis of carbon and water fluxes from the NOPEX boreal forest: comparison of measurements with FOREST-BGC simulations. Journal of Hydrology, 1998, 212-213, 62-78.	2.3	45
98	A fertile peatland forest does not constitute a major greenhouse gas sink. Biogeosciences, 2013, 10, 7739-7758.	1.3	45
99	Simulated and measured water uptake by picea abies under non-limiting soil water conditions. Agricultural and Forest Meteorology, 1994, 71, 147-164.	1.9	44
100	H2O and CO2fluxes at the floor of a boreal pine forest. Tellus, Series B: Chemical and Physical Meteorology, 2008, 60, 167-178.	0.8	43
101	Redefinition and global estimation of basal ecosystem respiration rate. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	1.9	43
102	Atmospheric methane removal by boreal plants. Geophysical Research Letters, 2012, 39, .	1.5	43
103	Quantification of C uptake in subarctic birch forest after setback by an extreme insect outbreak. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	42
104	Differentiating moss from higher plants is critical in studying the carbon cycle of the boreal biome. Nature Communications, 2014, 5, 4270.	5.8	42
105	Numerical analysis of pine forest evaporation and surface resistance. Agricultural and Forest Meteorology, 1986, 38, 59-79.	1.9	41
106	Airâ^Boreal Forest Transfer and Processing of Polychlorinated Biphenyls. Environmental Science & Envir	4.6	41
107	Variation in sapflow and stem growth in relation to tree size, competition and thinning in a mixed forest of pine and spruce in Sweden. Forest Ecology and Management, 2004, 188, 51-63.	1.4	40
108	Modeling GPP in the Nordic forest landscape with MODIS time series dataâ€"Comparison with the MODIS GPP product. Remote Sensing of Environment, 2012, 126, 136-147.	4.6	40

#	Article	IF	CITATIONS
109	Calibration and validation of a semi-empirical flux ecosystem model for coniferous forests in the Boreal region. Ecological Modelling, 2016, 341, 37-52.	1.2	39
110	Do the energy fluxes and surface conductance of boreal coniferous forests in Europe scale with leaf area?. Global Change Biology, 2016, 22, 4096-4113.	4.2	39
111	Bayesian calibration method used to elucidate carbon turnover in forest on drained organic soil. Biogeochemistry, 2008, 89, 61-79.	1.7	38
112	Evaluating the performance of commonly used gas analysers for methane eddy covariance flux measurements: the InGOS inter-comparison field experiment. Biogeosciences, 2014, 11, 3163-3186.	1.3	38
113	Effects of low thinning on carbon dioxide fluxes in a mixed hemiboreal forest. Agricultural and Forest Meteorology, 2018, 262, 59-70.	1.9	35
114	Effects of drought and meteorological forcing on carbon and water fluxes in Nordic forests during the dry summer of 2018. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190516.	1.8	35
115	Gas-exchange and sap flow measurements of Salix viminalis trees in short-rotation forest. Trees - Structure and Function, 1995, 9, 295-301.	0.9	33
116	A Calibration System for Soil Carbon Dioxideâ€Efflux Measurement Chambers. Soil Science Society of America Journal, 2003, 67, 327-334.	1.2	33
117	Open ventilated chamber system for measurements of H2O and CO2 fluxes from the soil surface. Soil and Tillage Research, 1997, 10, 169-184.	0.4	32
118	Current Carbon Balance of the Forested Area in Sweden and its Sensitivity to Global Change as Simulated by Biome-BGC. Ecosystems, 2006, 9, 894-908.	1.6	32
119	Two years with extreme and little snowfall: effects on energy partitioning and surface energy exchange in a high-Arctic tundra ecosystem. Cryosphere, 2016, 10, 1395-1413.	1.5	32
120	Spring initiation and autumn cessation of boreal coniferous forest CO ₂ exchange assessed by meteorological and biological variables. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 701.	0.8	31
121	The biophysical climate mitigation potential of boreal peatlands during the growing season. Environmental Research Letters, 2020, 15, 104004.	2.2	31
122	Assessing seasonality of biochemical CO ₂ exchange model parameters from micrometeorological flux observations at boreal coniferous forest. Biogeosciences, 2008, 5, 1625-1639.	1.3	31
123	Spatiotemporal evolution of CO2 concentration, temperature, and wind field during stable nights at the Norunda forest site. Agricultural and Forest Meteorology, 2010, 150, 692-701.	1.9	30
124	Thermal adaptation of net ecosystem exchange. Biogeosciences, 2011, 8, 1453-1463.	1.3	30
125	Impact of CO 2 storage flux sampling uncertainty on net ecosystem exchange measured by eddy covariance. Agricultural and Forest Meteorology, 2018, 248, 228-239.	1.9	30
126	Long-term measurements of stand water uptake in Swedish boreal forest. Agricultural and Forest Meteorology, 1999, 98-99, 547-554.	1.9	29

#	Article	IF	Citations
127	A Calibration System for Soil Carbon Dioxide-Efflux Measurement Chambers. Soil Science Society of America Journal, 2003, 67, 327.	1.2	29
128	Evaporation and storage of intercepted rain analysed by comparing two models applied to a boreal forest. Agricultural and Forest Meteorology, 1999, 98-99, 595-604.	1.9	28
129	The Net Landscape Carbon Balance—Integrating terrestrial and aquatic carbon fluxes in a managed boreal forest landscape in Sweden. Global Change Biology, 2020, 26, 2353-2367.	4.2	28
130	Simple calculation of extinction coefficient of forest stands. Agricultural Meteorology, 1981, 25, 97-110.	0.7	27
131	Pine forest microclimate simulation using different diffusivities. Boundary-Layer Meteorology, 1986, 35, 103-123.	1.2	27
132	Branch transpiration of pine and spruce scaled to tree and canopy using needle biomass distributions. Trees - Structure and Function, 2000, 14, 384-397.	0.9	27
133	Studying the spatial variability of methane flux with five eddy covariance towers of varying height. Agricultural and Forest Meteorology, 2015, 214-215, 456-472.	1.9	27
134	Surface energy budget dynamics of short-rotation willow forest. Theoretical and Applied Climatology, 1993, 47, 175-185.	1.3	26
135	Thermal roughness length of a boreal forest. Agricultural and Forest Meteorology, 1999, 98-99, 659-670.	1.9	26
136	Night-time evaporation from a short-rotation willow stand. Journal of Hydrology, 1994, 157, 235-245.	2.3	25
137	Assessment and simulation of global terrestrial latent heat flux by synthesis of CMIP5 climate models and surface eddy covariance observations. Agricultural and Forest Meteorology, 2016, 223, 151-167.	1.9	25
138	Gradient measurements with fixed and reversing temperature and humidity sensors above a thin forest. Agricultural and Forest Meteorology, 1990, 53, 81-103.	1.9	24
139	Scale aggregation — comparison of flux estimates from NOPEX. Agricultural and Forest Meteorology, 1999, 98-99, 103-119.	1.9	24
140	Carbon balance gradient in European forests: should we doubt â€~surprising' results? A reply to Piovesan & Adams. Journal of Vegetation Science, 2001, 12, 145-150.	1.1	24
141	Short-term effects of thinning, clear-cutting and stump harvesting on methane exchange in a boreal forest. Biogeosciences, 2014, 11, 6095-6105.	1.3	24
142	Gas-exchange and sap flow measurements of Salix viminalis trees in short-rotation forest. Trees - Structure and Function, 1995, 9, 289-294.	0.9	23
143	Water-use efficiency as a means of modelling net assimilation in boreal forests. Trees - Structure and Function, 2001, 15, 67-74.	0.9	23
144	Energy partitioning in relation to leaf area development of short-rotation willow coppice. Agricultural and Forest Meteorology, 1996, 81, 119-130.	1.9	22

#	Article	IF	CITATIONS
145	Covariations between plant functional traits emerge from constraining parameterization of a terrestrial biosphere model. Global Ecology and Biogeography, 2019, 28, 1351-1365.	2.7	22
146	Turbulence characteristics and dispersion in a forestâ€"tests of Thomson's random-flight model. Agricultural and Forest Meteorology, 2004, 127, 203-222.	1.9	21
147	Water Vapor, CO2, and Temperature Profiles in and above a Forest—Accuracy Assessment of an Unattended Measurement System. Journal of Atmospheric and Oceanic Technology, 2000, 17, 417-425.	0.5	20
148	Magnani et al. reply. Nature, 2008, 451, E3-E4.	13.7	20
149	Gradient distributions and flux profile relations above a rough forest. Quarterly Journal of the Royal Meteorological Society, 1984, 110, 553-563.	1.0	16
150	Large carbon-sink potential by Kyoto forests in Swedenâ€"a case study on willow plantations. Tellus, Series B: Chemical and Physical Meteorology, 2022, 59, 910.	0.8	16
151	Methane exchange in a boreal forest estimated by gradient method. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 26688.	0.8	16
152	Impacts of Clear-Cutting of a Boreal Forest on Carbon Dioxide, Methane and Nitrous Oxide Fluxes. Forests, 2020, 11, 961.	0.9	16
153	Boreal forest soil carbon fluxes one year after a wildfire: Effects of burn severity and management. Global Change Biology, 2021, 27, 4181-4195.	4.2	16
154	Simulation of willow short-rotation forest evaporation using a modified Shuttleworth-Wallace approach. Hydrological Processes, 2001, 15, 97-113.	1.1	15
155	Tundra permafrost thaw causes significant shifts in energy partitioning. Tellus, Series B: Chemical and Physical Meteorology, 2022, 68, 30467.	0.8	15
156	A new land-surface treatment for HIRLAM $\hat{a} \in$ " comparisons with NOPEX measurements. Agricultural and Forest Meteorology, 1999, 98-99, 239-256.	1.9	13
157	A young afforestation area in Iceland was a moderate sink to CO&Itsub>2&It/sub> only a decade after scarification and establishment. Biogeosciences, 2009, 6, 2895-2906.	1.3	13
158	Synoptic evapotranspiration model applied to two northern forests of different density. Journal of Hydrology, 1987, 95, 185-201.	2.3	12
159	Dependence of kBâ^'1 factor on roughness Reynolds number for barley and pasture. Agricultural and Forest Meteorology, 2001, 106, 147-152.	1.9	12
160	Applicability of leaf area index products for boreal regions of Sweden. International Journal of Remote Sensing, 2009, 30, 5619-5632.	1.3	12
161	Time shift between net and gross CO2 uptake and growth derived from tree rings in pine and spruce. Trees - Structure and Function, 2019, 33, 765-776.	0.9	12
162	Reduced Loss in Precipitation Measurements Using a New Wind Shield for Raingages. Journal of Atmospheric and Oceanic Technology, 1991, 8, 444-451.	0.5	11

#	Article	IF	CITATIONS
163	Discrepancy between Energy and Water Balance Estimates of Evapotranspiration. Developments in Agricultural and Managed-forest Ecology, 1979, 9, 237-255.	0.2	10
164	Boreal Forest Surface Parameterization in the ECMWF Modelâ€"1D Test with NOPEX Long-Term Data. Journal of Applied Meteorology and Climatology, 2003, 42, 95-112.	1.7	10
165	Estimation of winter leaf area index and sky view fraction for snow modelling in boreal coniferous forests: consequences on snow mass and energy balance. Hydrological Processes, 2013, 27, 2876-2891.	1.1	9
166	The importance of micrometeorological variations for photosynthesis and transpiration in a boreal coniferous forest. Biogeosciences, 2015, 12, 237-256.	1.3	9
167	Experimental determination of the roughness length for temperature over a field of tall grass in central sweden. Geografiska Annaler, Series A: Physical Geography, 1999, 81, 87-100.	0.6	8
168	Estimating Net Primary Production of Swedish Forest Landscapes by Combining Mechanistic Modeling and Remote Sensing. Ambio, 2009, 38, 316-324.	2.8	8
169	Upscaling of methane exchange in a boreal forest using soil chamber measurements and high-resolution LiDAR elevation data. Agricultural and Forest Meteorology, 2015, 214-215, 393-401.	1.9	8
170	Coniferous Forests (Scots and Maritime Pine): Carbon and Water Fluxes, Balances, Ecological and Ecophysiological Determinants. Ecological Studies, 2003, , 71-97.	0.4	8
171	Estimate of annual carbon balance of a young Siberian larch (Larix sibirica) plantation in Iceland. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 891-899.	0.8	7
172	Willow production related to climatic variations in Southern Sweden. Scandinavian Journal of Forest Research, 1987, 2, 99-110.	0.5	5
173	Measuring water use efficiency of Eucalypt tress with chambers and micrometeorological techniques — comment. Journal of Hydrology, 1995, 169, 281-283.	2.3	5
174	Correction to "Global patterns of landâ€atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations― Journal of Geophysical Research, 2012, 117, .	3.3	5
175	Will rising levels of atmospheric CO ₂ and temperature lead to enhanced or suppressed rates of evapotranspiration? A comment. Weather, 1996, 51, 285-288.	0.6	4
176	Accounting for all territorial emissions and sinks is important for development of climate mitigation policies. Carbon Balance and Management, 2021, 16, 10.	1.4	4
177	Evapotranspiration Measurements in JÃrdraÃ¥s, Instrumentation, Data Gathering and Processing. Developments in Agricultural and Managed-forest Ecology, 1979, 9, 15-26.	0.2	4
178	Analysis of carbon and water fluxes from the NOPEX boreal forest: comment. Journal of Hydrology, 1999, 218, 92-94.	2.3	2
179	Carbon Balance Gradient in European Forests: Should We Doubt 'Surprising' Results? A Reply to Piovesan & Adams. Journal of Vegetation Science, 2001, 12, 145.	1.1	1
180	Verification of a One-Dimensional Model of \$\$hbox {CO}_{2}\$\$ CO 2 Atmospheric Transport Inside and Above a Forest Canopy Using Observations at the Norunda Research Station. Boundary-Layer Meteorology, 2018, 168, 103-126.	1.2	1

#	Article	IF	CITATIONS
181	Biophysical controls on CO2fluxes of three Northern forests based on long-term eddy covariance data. Tellus, Series B: Chemical and Physical Meteorology, 2008, 60, .	0.8	1
182	Impacts of stump harvesting on carbon dioxide, methane and nitrous oxide fluxes. IForest, 2022, 15, 148-162.	0.5	1
183	Water use efficiency as a measure to assess forest carbon uptake for different management strategies. IOP Conference Series: Earth and Environmental Science, 2009, 6, 082015.	0.2	0
184	Modelling Regional Surface Energy Exchange and Boundary Layer Development in Boreal Sweden — Comparison of Mesoscale Model (RAMS) Simulations with Aircraft and Tower Observations. Atmosphere, 2012, 3, 537-556.	1.0	0
185	Prediction of photosynthesis in Scots pine ecosystems across Europe by a needle-level theory. Atmospheric Chemistry and Physics, 2018, 18, 13321-13328.	1.9	0
186	Hydrology and Biogeochemistry of Boreal Forests. Ecological Studies, 2011, , 321-339.	0.4	0