Wolfgang Hoehenwarter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6065957/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Endocytosis is a significant contributor to uranium(VI) uptake in tobacco (Nicotiana tabacum) BY-2 cells in phosphate-deficient culture. Science of the Total Environment, 2022, 823, 153700.	8.0	9
2	Bacterial-type ferroxidase tunes iron-dependent phosphate sensing during Arabidopsis root development. Current Biology, 2022, 32, 2189-2205.e6.	3.9	16
3	A modular two yeast species secretion system for the production and preparative application of unspecific peroxygenases. Communications Biology, 2021, 4, 562.	4.4	38
4	Exocyst subunit Exo70B2 is linked to immune signaling and autophagy. Plant Cell, 2021, 33, 404-419.	6.6	31
5	LC–MS Based Draft Map of the Arabidopsis thaliana Nuclear Proteome and Protein Import in Pattern Triggered Immunity. Frontiers in Plant Science, 2021, 12, 744103.	3.6	8
6	Phosphorylationâ€dependent control of an RNA granuleâ€localized protein that fineâ€tunes defence gene expression at a postâ€transcriptional level. Plant Journal, 2020, 101, 1023-1039.	5.7	26
7	Bringing New Methods to the Seed Proteomics Platform: Challenges and Perspectives. International Journal of Molecular Sciences, 2020, 21, 9162.	4.1	19
8	Phosphorylation of the CAMTA3 Transcription Factor Triggers Its Destabilization and Nuclear Export. Plant Physiology, 2020, 184, 1056-1071.	4.8	29
9	Working day and night: plastid casein kinase 2 catalyses phosphorylation of proteins with diverse functions in light―and dark―adapted plastids. Plant Journal, 2020, 104, 546-558.	5.7	4
10	Reshaping of the Arabidopsis thaliana Proteome Landscape and Co-regulation of Proteins in Development and Immunity. Molecular Plant, 2020, 13, 1709-1732.	8.3	26
11	Flexibility of intrinsically disordered degrons in AUX/IAA proteins reinforces auxin co-receptor assemblies. Nature Communications, 2020, 11, 2277.	12.8	38
12	Expression of elastolytic cathepsins in human skin and their involvement in age-dependent elastin degradation. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129544.	2.4	21
13	A comprehensive map of human elastin crossâ€linking during elastogenesis. FEBS Journal, 2019, 286, 3594-3610.	4.7	26
14	Multiple Glycation Sites in Blood Plasma Proteins as an Integrated Biomarker of Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 2019, 20, 2329.	4.1	28
15	Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography : application to boron deficiency induced phosphoproteomics. Plant Journal, 2019, 98, 370-384.	5.7	14
16	UbiGate: a synthetic biology toolbox to analyse ubiquitination. New Phytologist, 2018, 217, 1749-1763.	7.3	23
17	Degradation of tropoelastin and skin elastin by neprilysin. Biochimie, 2018, 146, 73-78.	2.6	21
18	Proteome Map of Pea (Pisum sativum L.) Embryos Containing Different Amounts of Residual Chlorophylls. International Journal of Molecular Sciences, 2018, 19, 4066.	4.1	15

#	Article	IF	CITATIONS
19	The effect of simulated microgravity on the Brassica napus seedling proteome. Functional Plant Biology, 2018, 45, 440.	2.1	12
20	Mining seed proteome: from protein dynamics to modification profiles. Biological Communications, 2018, 63, 43-58.	0.8	15
21	Assessment of Label-Free Quantification in Discovery Proteomics and Impact of Technological Factors and Natural Variability of Protein Abundance. Journal of Proteome Research, 2017, 16, 1410-1424.	3.7	91
22	Changes in PUB22 Ubiquitination Modes Triggered by MITOGEN-ACTIVATED PROTEIN KINASE3 Dampen the Immune Response. Plant Cell, 2017, 29, 726-745.	6.6	63
23	Multi-Omics of Tomato Glandular Trichomes Reveals Distinct Features of Central Carbon Metabolism Supporting High Productivity of Specialized Metabolites. Plant Cell, 2017, 29, 960-983.	6.6	143
24	Identification of STN7/STN8 kinase targets reveals connections between electron transport, metabolism and gene expression. Plant Journal, 2017, 90, 1176-1186.	5.7	50
25	MAPKs Influence Pollen Tube Growth by Controlling the Formation of Phosphatidylinositol 4,5-Bisphosphate in an Apical Plasma Membrane Domain. Plant Cell, 2017, 29, 3030-3050.	6.6	34
26	Variation in auxin sensing guides AUX/IAA transcriptional repressor ubiquitylation and destruction. Nature Communications, 2017, 8, 15706.	12.8	56
27	Stress-Related Mitogen-Activated Protein Kinases Stimulate the Accumulation of Small Molecules and Proteins in Arabidopsis thaliana Root Exudates. Frontiers in Plant Science, 2017, 8, 1292.	3.6	15
28	Combined 15N-Labeling and TandemMOAC Quantifies Phosphorylation of MAP Kinase Substrates Downstream of MKK7 in Arabidopsis. Frontiers in Plant Science, 2017, 8, 2050.	3.6	19
29	Regulation of WRKY46 Transcription Factor Function by Mitogen-Activated Protein Kinases in Arabidopsis thaliana. Frontiers in Plant Science, 2016, 7, 61.	3.6	54
30	Phenotypes on demand via switchable target protein degradation in multicellular organisms. Nature Communications, 2016, 7, 12202.	12.8	50
31	Comparative expression profiling reveals a role of the root apoplast in local phosphate response. BMC Plant Biology, 2016, 16, 106.	3.6	70
32	Molecular-level insights into aging processes of skin elastin. Biochimie, 2016, 128-129, 163-173.	2.6	87
33	Immobilized metal affinity chromatography on collapsed Langmuir-Blodgett iron(III) stearate films and iron(III) oxide nanoparticles for bottom-up phosphoproteomics. Journal of Chromatography A, 2016, 1443, 181-190.	3.7	18
34	Phosphoprotein Enrichment Combined with Phosphopeptide Enrichment to Identify Putative Phosphoproteins During Defense Response in Arabidopsis thaliana. Methods in Molecular Biology, 2016, 1398, 373-383.	0.9	3
35	Identification of protein N-termini in Cyanophora paradoxa cyanelles: transit peptide composition and sequence determinants for precursor maturation. Frontiers in Plant Science, 2015, 6, 559.	3.6	17
36	Changes in the Phosphoproteome and Metabolome Link Early Signaling Events to Rearrangement of Photosynthesis and Central Metabolism in Salinity and Oxidative Stress Response in Arabidopsis. Plant Physiology, 2015, 169, 3021-3033.	4.8	53

#	Article	IF	CITATIONS
37	Combining Metabolic 15N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome. Methods in Molecular Biology, 2015, 1306, 81-96.	0.9	9
38	The RNA-binding protein RNP29 is an unusual Toc159 transport substrate. Frontiers in Plant Science, 2014, 5, 258.	3.6	9
39	Targeted Proteomics Analysis of Protein Degradation in Plant Signaling on an LTQ-Orbitrap Mass Spectrometer. Journal of Proteome Research, 2014, 13, 4246-4258.	3.7	44
40	From Proteomics to Systems Biology: MAPA, MASS WESTERN, PROMEX, and COVAIN as a User-Oriented Platform. Methods in Molecular Biology, 2014, 1072, 15-27.	0.9	10
41	Tandem Metal-Oxide Affinity Chromatography for Enhanced Depth of Phosphoproteome Analysis. Methods in Molecular Biology, 2014, 1072, 621-632.	0.9	10
42	Using ProtMAX to create high-mass-accuracy precursor alignments from label-free quantitative mass spectrometry data generated in shotgun proteomics experiments. Nature Protocols, 2013, 8, 595-601.	12.0	44
43	Identification of Novel in vivo MAP Kinase Substrates in Arabidopsis thaliana Through Use of Tandem Metal Oxide Affinity Chromatography. Molecular and Cellular Proteomics, 2013, 12, 369-380.	3.8	122
44	Proteome and metabolome profiling of cytokinin action in Arabidopsis identifying both distinct and similar responses to cytokinin down- and up-regulation. Journal of Experimental Botany, 2013, 64, 4193-4206.	4.8	58
45	ProMEX – a mass spectral reference database for plant proteomics. Frontiers in Plant Science, 2012, 3, 125.	3.6	36
46	Proteomic and Phosphoproteomic Analysis of Picea wilsonii Pollen Development under Nutrient Limitation. Journal of Proteome Research, 2012, 11, 4180-4190.	3.7	19
47	MAPA Distinguishes Genotype-Specific Variability of Highly Similar Regulatory Protein Isoforms in Potato Tuber. Journal of Proteome Research, 2011, 10, 2979-2991.	3.7	42
48	Functional analysis of proteins and protein species using shotgun proteomics and linear mathematics. Amino Acids, 2011, 41, 329-341.	2.7	10
49	Spectral counting robust on high mass accuracy mass spectrometers. Rapid Communications in Mass Spectrometry, 2010, 24, 3609-3614.	1.5	38
50	Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and mass accuracy precursor alignment. Plant Journal, 2010, 63, no-no.	5.7	190
51	A rapid approach for phenotypeâ€screening and database independent detection of cSNP/protein polymorphism using mass accuracy precursor alignment. Proteomics, 2008, 8, 4214-4225.	2.2	78
52	Identification of proteins that modify cataract of mouse eye lens. Proteomics, 2008, 8, 5011-5024.	2.2	21
53	Eye lens proteomics. Amino Acids, 2006, 30, 369-389.	2.7	60
54	Eye lens proteomics: from global approach to detailed information about phakinin and gamma E and F crystallin genes. Proteomics, 2005, 5, 245-257.	2.2	9